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We analysed a county-level data set of single-season rice yield and daily weather
outcomes in China to examine the effects of temperature on China’s rice sector. We
found that rice yield exhibited highly nonlinear responses to temperature changes: rice
yield increased with temperature up to 28°C and decreased sharply with higher
temperatures. Holding current growing seasons and regions constant, average rice
yield in China is projected to decrease by 10–19 per cent by 2050 and 11–33 per cent by
2070 due to future warming under the global climate models HadGEM2-ES and
NorESM1-M. These results imply that future warming poses a major challenge for
Chinese rice farmers and that the effectiveness of adaptations will depend on how well
they reduce the negative temperature impacts on rice yield because of very hot days.

Key words: China, global warming, nonlinear temperature effects, rice yield.

1. Introduction

Given growing scientific evidence demonstrating that the earth is becoming
warmer, agricultural vulnerability to rising temperature has been extensively
studied (see a detailed review in Dell et al. 2014). With a few exceptions
(Welch et al. 2010; Lobell et al. 2011; Chen et al. 2016a,b; Zhang et al. 2017),
most of the economic analyses examining the impacts of warming on
agriculture have focused on developed countries (for example, see Mendel-
sohn et al. 1994; Schlenker et al. 2006; Deschênes and Greenstone 2007;
Schlenker and Roberts 2009). There is an urgent need for rigorous studies to
evaluate the impacts of warming on agriculture in developing countries,
which are home to over 70 per cent of the world’s poor and heavily depend on
agriculture.
The purpose of this article is to evaluate the responses of rice yield in China

to temperature variations and assess the impact of future warming on rice
yield in China. China’s rice sector provides a compelling setting to study the
impacts of warming on agriculture in developing countries for several
reasons. First, rice is the most important food crop in China’s agricultural
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economy, and it is widely produced and consumed in the country. According
to the National Bureau of Statistics of China (NBS), rice accounts for about
30 per cent of the total grain area in China, 50 per cent of the nation’s grain
output and roughly 35 per cent of the total grain consumption in China while
corn, soybeans and wheat account for approximately 26 per cent, 10 per cent
and 23 per cent, respectively (NBS 1999–2009). Second, China has witnessed
significant warming. Annual mean surface temperature has increased by 0.5–
0.8°C over the past century, which is considerably higher than the average
global temperature rise over the same period (Ding et al. 2007). Third,
existing studies show inconsistent findings regarding how rice yield responds
to temperature changes. Several studies used the similar data sets to analyse
the effects of temperature on rice yields in China, but obtained mixed results
(a detailed review is presented below). By accounting for nonlinearity, we
attempt to reconcile these contradictory results.
At present, China has three main rice cropping systems, namely: single-

season rice; double-cropped rice; and multiple-cropped rice. The latter two
rice cropping systems involve various combinations of early rice, middle rice
and late rice production. In this article, we analysed the effects of temperature
changes on single-season rice yield for two reasons. First, single-season rice is
widely produced across China’s agricultural heartland (Figure 1). Second,
due to increased labour costs, many Chinese farmers have reduced the
production of double-cropped and multiple-cropped rice and increased
single-season rice production. Figure S1 in Appendix S1 shows that the total
planted area of early rice and late rice in China declined by 38 per cent and 37
per cent, respectively during the period 1990–2010, while the total planted
area of single-season rice increased by 30 per cent over the same period.

Figure 1 Spatial distribution of single-season rice production in China (ten-year average for
the period 2000–2009).
Note: This map shows area-normalised rice production density, which is the ratio of a county’s
single-season rice planted area to that county’s total grain area.
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Using a county-level panel data set of annual single-season rice yield and
daily weather observations in China over the period 2000–2009, we developed
a fixed-effects spatial error model to estimate the link between temperature
and rice yield. To account for the potential nonlinear relationship between
rice yield and temperature, we followed the approach of Schlenker and
Roberts (2009) and constructed temperature variables using temperature bins
that measure accumulation of heat for each 3°C temperature interval. To
account for the simultaneous variations in weather variables, the regression
model also included rainfall and sunshine duration as additional weather
variables. Moreover, to minimise the potential estimation biases originating
from omitted variables, the regression model controlled for county fixed
effects, year fixed effects and spatial correlation of the error terms.
We found that single-season rice yield exhibited negative responses to high

temperatures and that the relationships between rice yield and weather
variables were highly nonlinear. Rice yield increased with temperature up to
28°C, and temperatures above 28°C during rice growing seasons were
harmful for rice growth. We also discovered that rice yield peaked with
approximately 800 mm of rainfall and 900 hours of sunshine hours over the
growing seasons. These findings remained robust to variations in rice varieties
and econometric estimation strategies. Using estimated coefficients of
temperature variables, we evaluated the impact of future warming on
single-season rice yield in China. Holding current rice growing seasons and
regions fixed, county-average single-season rice yield in China is projected to
decline by 10–19 per cent by 2050 and 11–33 per cent by 2070 due to future
warming under the global climate models HadGEM2-ES and NorESM1-M.
Many agronomic studies have examined temperature effects on rice yield,

but have mixed findings. For instance, based on observed data compiled from
farmer-managed fields in tropical/subtropical Asia and on the experimental
data collected in Southeast Asia, respectively, Welch et al. (2010) and Peng
et al. (2004) showed that rice yields in these regions responded negatively to
higher daily minimum temperatures (Tmin). In contrast, rice yield in China
was found to exhibit a positive response to elevated Tmin (Chen and Tian
2016; Chen et al. 2016b). With regard to the effects of higher daily maximum
temperatures (Tmax) on rice yield, empirical findings are also mixed. Peng
et al. (2004) found an insignificant correlation between rice yield in Southeast
Asia and Tmax; Welch et al. (2010) found a positive correlation between rice
yield in tropical/subtropical Asia and Tmax; and rice yield in China was found
to respond negatively to higher Tmax (Chen et al. 2016a,b). Several studies
have used similar data sets to analyse the effects of changes in Tmin and Tmax

on rice yields in China with mixed results (Tao et al. 2008; Zhang et al. 2010).
We contribute to the existing literature in two ways. First, we provide

the first empirical evidence of the nonlinear temperature effects on rice
yield. This finding reconciles seemingly contradictory results about how
rice yield responds to temperature in the existing literature. Second, we
add to the sparse economic literature examining the impact of warming on
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agriculture in developing countries. We show that if no additional
adaptation is undertaken, future global warming is expected to cause a
sizeable negative effect on rice yield in China. Given the importance of rice
in China’s agricultural economy, our findings may stimulate policy
discussions about how to mitigate climate change and what strategies
should be developed to adapt Chinese agriculture to future warming.
The rest of the paper is organised as follows: Section 2 introduces the

empirical model. Section 3 describes data sources. Section 4 presents main
regression results and considers a number of robustness checks. Section 5
projects future climate impacts on rice yield. Section 6 concludes the paper.

2. Empirical model

Several recent studies suggest that if weather affects farmers’ input use and
climate adaptation behaviours, one should only incorporate weather
variables as explanatory variables (and control for other time-invariant
factors) to obtain the total marginal effects of weather on crop yields (e.g. see
McCarl et al. 2008, Schlenker and Roberts 2009; Welch et al. 2010). If non-
weather factors, such as prices of inputs and output, are included as
additional explanatory variables, estimated coefficients of weather variables
should be interpreted as the partial effects of weather on yields. That is
because controlling for these non-weather factors may absorb some of the
overall effects of weather on yields. The regression model that we developed is
presented below:

logYr;t ¼
X

m

amTempBinmr;t þ bWeatherr;t þ cr þ ht þ er;t ð1Þ

er;t ¼ q
X

r0
Wr;r0er0;t þ ur;t ð2Þ

Here, logYr;t represents the natural logarithm of average single-season rice
yield in county r and year t. Following Schlenker and Roberts (2009), we
constructed temperature variables using temperature bins for each 3°C
temperature interval. TempBinmr;t denotes heat accumulation in county r and
year t when temperature falls into the mth temperature bin during rice
growing seasons and is constructed using a fitted sine curve. We divided daily
temperatures during rice growing seasons, measured in °C, into fourteen bins,
each of which was 3°C wide. We defined TempBin1r;t = heat accumulation
when temperature was into the range of [0°C, 3°C)1 , TempBin2r;t = heat
accumulation when temperature was into the range of [3°C, 6°C), and so on.
Finally, TempBin14r;t = heat accumulation when temperature was above 39°C.

1 Because daily Tmin during single-season rice growing seasons was above 0°C for all regions
in our sample, the first temperature bin was selected to range from 0°C to 3°C.
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The implicit assumption is that the temperature effect on rice yield is
consistent within each bin, which is reasonable given the small size of each
temperature bin.
To account for the simultaneous variations in weather variables and isolate

the effects of temperature on rice yield, linear and quadratic terms of the sums
of rainfall and sunshine duration during rice growing seasons were also
included as explanatory variables and represented by Weatherr;t. County
fixed effects (cr) were incorporated to account for unobserved regional
heterogeneity that was specific to county r, such as soil quality. Year fixed
effects (ht) were also included to account for the unobserved factors that were
the same to all counties in a given year, such as global CO2 concentrations. er;t
are the error terms. am are the coefficients of interest. The main hypothesis
was to test whether am ¼ 0, to test the null hypothesis that temperature had
no effect on rice yield.
As shown in Equation (2), the error terms er,t were allowed to be spatially

correlated across single-season rice-producing counties. q is the parameter of
spatial correlation, and Wr;r0 is a prespecified spatial weights matrix that
describes the spatial dependence of county r with its neighbours. ur;t are the
error terms that are independently normally distributed with E ur;t

� � ¼ 0 and
var ur;t

� � ¼ r2r . The error terms er,t are spatially correlated for at least two
reasons. First, some spatially correlated explanatory variables, such as
agricultural policies implemented in certain regions or production practices
used by neighbouring rice-producing counties, are omitted as explanatory
variables in Equation (1). Second, nearby rice-producing counties may share
the similar local characteristics (such as soil type) or experience with pest
problems in a particular growing season. If these factors cannot be
incorporated as explanatory variables in Equation (1), then the error terms
er,t are expected to be spatially correlated.
In the baseline analysis presented below, we first adopted a spatial

contiguity matrix that assigns 1 to neighbouring single-season rice-producing
counties sharing common boundaries and 0 to other counties. We also
considered a distance weights matrix in the robustness check session. The
distance weights matrix assigned positive weights to the six adjacent single-
season rice-producing counties relative to county r and 0 to other counties.
The positive weights in the distance weights matrix were computed using the
inverses of the geographical distances between the centroids of counties. This
distance weights matrix is referred to as KNN(6) in the remainder of the
paper.
We estimated the regression models (1)-(2) using a two-step procedure. We

first estimated the parameter of spatial correlation q̂ using the generalised
method of moments approach and premultiplied the original data by I� q̂W,
where I and W denote the identity matrix and the spatial weights matrix,
respectively. Using the transformed data, we then estimated the models using
the approach introduced in Hsiang (2010) to allow for the heteroscedasticity
and serial correlation of the error terms. Thus, our estimation strategy allows
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for spatial correlation, serial correlation and heteroscedasticity of the error
terms.

3. Data

Data used for this analysis were assembled from several sources. We obtained
county-level single-season rice yield for the period 2000–2009 from the NBS.
In the sample, rice yield ranged approximately between 1,900 and 13,700 kg
per hectare (ha) with a national average of 7,100 kg per ha (Table S1 in the
Appendix S1). Regional-specific rice growing seasons were compiled from the
Ministry of Agriculture of China.
Daily weather data, including Tmin, Tmax, average temperature, rainfall and

sunshine duration, were obtained from the China Meteorological Data
Sharing Service System, which reports daily weather information for more
than 800 weather stations in China. We merged daily weather data with
annual yield data using the coordinates of weather stations and county
centroids. Of the 771 single-season rice-producing counties included in the
sample, we found that 566 counties had weather stations and 205 counties did
not have weather stations. For the 566 counties with weather stations, each
county has only one weather station. For the 205 counties without weather
stations, we imputed their weather information from the nearest contiguous
counties among the 2,806 counties in China. As a robustness check, we
constructed weather variables for all single-season rice-producing counties by
taking a spatially weighted average of weather data from their neighbouring
counties and using the inverses of the geographical distances between the
centroids of counties as the weights. A county’s neighbours were defined as
those that share common boundaries.

4. Results

4.1 Spatial correlation of the error terms

Table 1 reports test statistics for the presence of spatial correlation of the
error terms. To examine whether the error terms are spatially correlated, we
performed four tests, including Moran’s I test, the Lagrange multiplier (LM)
ERR test, the likelihood-ratio (LR) test and the Wald test. When conducting
these tests, we used the same set of explanatory variables as in Equation (1).
The test results in Table 1 indicate that the spatial correlation of the error
terms is statistically significant and large. The parameter of spatial correlation
is 0.42 under the contiguity matrix and 0.36 under the KNN(6). These test
statistics suggest that the error terms are spatially correlated and that the true
t-statistics would be overestimated if the spatial correlation of the error terms
was not considered in the regression analysis.
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4.2 Effects of temperature on rice yield

Figure 2a shows the point estimates and the 95 per cent confidence bands of
the temperature variables. The horizontal axis of this figure denotes
temperature variables, while the vertical axis of this figure denotes the
natural logarithm of rice yield. We found that rice yield increased with
temperature up to 28°C and that temperatures above 28°C can cause large
reductions in rice yield. For instance, replacing a full day with an average
temperature of 28°C with a full day with an average temperature of 36°C is
expected to reduce rice yield by 15.1 per cent, holding all else constant. High
temperatures reduce rice yield mainly by negatively affecting the photosyn-
thesis process in rice, increasing respiration demand and reducing pollen
production (Wassmann et al. 2009). This critical temperature threshold is
comparable with those identified for corn, soybeans and cotton (Schlenker
and Roberts 2009; Chen et al. 2016a).
Because temperature bins have different means and exhibit different

changing trends, it is not appropriate to directly compare their marginal
impacts on rice yield. To overcome this difficulty, we examined the marginal
effects per standard deviations (SDs) of the temperature variables, which were
computed by multiplying coefficient estimates of each temperature bin by the
corresponding SD. As shown in Figure 2b, we found that the largest positive
marginal effect per SD was accumulation of heat in the temperature range of
21–24°C (+4.2 per cent), while the largest negative marginal effect per SD
came from heat accumulation in the temperature range of 30–33°C (�4.0 per
cent).
Parameter estimates for rainfall and sunshine duration show similar

nonlinear patterns (Table S2 in the Appendix S1 reports point estimates of
these weather variables). Rice yield peaked with 830 mm of rainfall over the
growing seasons. Rainfall above this level can depress rice yield by preventing
timely planting, damaging planted area and creating disease pressure
(Auffhammer et al. 2012). The optimal amount of sunshine duration needed
for rice growth is estimated to be 912 hours. Estimated rainfall and sunshine
duration requirements for rice are consistent with the existing agronomic

Table 1 Tests for the presence of spatial correlation of the error terms

Spatial weights matrix Contiguity matrix KNN(6)

Moran-I ~ N(0,1) 18.72 26.16
LM-ERR ~ v²(1) 245.20 218.97
LR ~ v²(1) 372.35 350.81
Wald ~ v²(1) 13296.00 10383.42
Parameter of spatial correlation 0.42 0.36

Note: Two spatial weights matrices were used to examine the existence of spatial correlation of the error
terms. Under the spatial contiguity matrix, the (r, r’) element of the matrix is unity if counties r and r’ share
a common boundary and zero otherwise. KNN(6) is an inverse distance matrix that weights the six nearest
neighbours according to their physical distance, and assign zero to other counties.
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studies (e.g. see Zhang et al. 2008), but they are significantly higher than the
water and sunshine requirements for corn, soybeans and cotton (Schlenker
and Roberts 2009; Chen et al. 2016a).

4.3 Robustness check

We tested the robustness of our key findings to an alternative spatial weights
matrix and to alternative variables and samples in five different scenarios.
Specifically, in Scenario (1), we used the distance matrix KNN(6) described in
Section 2 as the spatial weights matrix in the regression analysis. In Scenario
(2), a linear time trend and a quadratic time trend by province were used to
represent exogenous technological change boosting rice yield. In Scenarios (3)
and (4), we examined whether the estimated temperature effects presented
above are sensitive to different rice varieties. We replicated the above
regression analysis using the subsample with counties producing Japonica rice
only in Scenario (3) and using the subsample with counties producing Indica
rice only in Scenario (4). Finally, in Scenario (5), we constructed weather
variables for all single-season rice-producing counties by taking a spatially
weighted average of weather data from their neighbours as mentioned above
and then replicated the aforementioned regression analysis. Table S2 in the
Appendix S1 reports point estimates of weather variables for these scenarios,
while Figure S2 in the Appendix S1 depicts the point estimates and the 95 per
cent confidence bands of the temperature variables.

Figure 2 Nonlinear relationships between temperature and rice yield.
Note: Results presented in the two panels were estimated using temperature bins as
temperature variables. The left panel (a) shows point estimates and the 95 per cent confidence
intervals of the temperature variables. The right panel (b) shows the marginal effects on rice
yield per SD of temperature variables. The smooth lines fit coefficient estimates of each 3°C
temperature range using an eighth-order polynomial function. Histograms at the bottom of
panels (a) and (b) show the distribution of mean and SD of temperature bins in the data,
respectively. Because the coefficient estimate of TempBin14r;t when temperature was above 39°C
is considerably larger than the coefficient estimates of other bins (see Table S2 in the
Appendix S1), it was omitted in the two panels to make the figure compact. Standard errors
were adjusted for spatial correlation and serial correlation and are robust to heteroscedasticity.
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We found that our key finding of the negative responses of rice yield to
high temperatures remained robust to variations in the spatial weights matrix
and to a different approach used to represent technological change for rice
yield growth. This finding also remained robust to different rice varieties and
a different approach used to construct weather variables. Figure S2 in the
Appendix S1 shows that the critical temperature threshold (28°C) identified in
the baseline scenario remained remarkably robust.

5. Future climate change impact

We used estimated coefficients of temperature variables to evaluate the future
climate impacts on rice yield in China. Projections of future climate variables
were taken from WorldClim—Global Climate Data (http://www.worldclim.
org/). This source provides climate predictions based on the most recent
global climate models under four representative concentration pathways
(RCPs), including RCP2.6, RCP4.5, RCP6.0 and RCP8.5. The four pathways
differ by assumed greenhouse gas (GHG) concentration trajectory. While
RCP2.6 assumes that global GHG emissions peak between 2010 and 2020
and decline quickly thereafter, RCP8.5 assumes that GHG emissions
continue to rise during this century. The climate variables provided by
WorldClim include monthly average minimum and maximum temperatures
and monthly total rainfall, for the medium term (2050, average for 2041–
2060) and the long term (2070, average for 2061–2080). We selected RCP2.6
and RCP8.5 for this analysis because the two pathways cover the entire range
of the projected future GHG emissions changes. Following Warszawski et al.
(2014), we used climate data based on the global climate models HadGEM2-
ES and NorESM1-M, which represent two distinct predictions for future
global temperature changes. We downloaded the data at 2.5 minutes (of a
longitude and latitude degree) spatial resolution (about 4.5 km at the
equator), which enabled us to obtain future climate variables for all Chinese
counties included in our sample.
Following Hsiang et al. (2017), we used a three-step process to construct

county-level projections of daily Tmin and Tmax. First, we constructed
monthly probability distribution functions of Tmin and Tmax for all single-
season rice-producing counties included in the sample, based on historical
daily observations from 1981 to 2010. Second, we computed the projected
changes in monthly average Tmin and Tmax for all counties in our sample,
which are the differences between the projected monthly average minimum
and maximum temperatures based on the WorldClim database and the
corresponding average temperature data based on the historical data from
1981 to 2010. Third, we assumed that the distributions of Tmin and Tmax in
the twenty-first century mirror the distributions obtained in the first step
based on the historical data. That allowed us to obtain the distributions of
daily Tmin and Tmax in the medium term and the long term for the two forcing
pathways considered (RCP2.6 and RCP8.5).
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We then calculated the projected changes in temperature bins across
regions, which are the differences between the temperature bins computed
based on the constructed daily Tmin and Tmax data for the twenty-first century
and the average temperature bins in our sample (2000–2009). Using the
coefficient estimates of the temperature bins, we predicted county-specific
changes in rice yield, weighted by each county’s share in total single-season
rice production, to obtain the estimates of the impacts of future warming on
rice yield.
Figure 3 shows the effects of future warming on average rice yield. We

found that warming will reduce rice yield and that the likely magnitudes of
the reductions depend on climate models. Under the HadGEM2-ES model,
average rice yield in the medium-term is projected to decrease by 11.4–13.5
per cent under RCP2.6 and 11.9–18.6 per cent under RCP8.5 (Figure 3a).
Under the NorESM1-M model, the corresponding yield reductions are
smaller by 10.2–12.0 per cent under RCP2.6 and 9.9–13.7 per cent under
RCP8.5 (Figure 3b). Under RCP8.5, the yield reductions in the long-term are
projected to be considerably larger than the yield reductions in the medium-
term (Figures 3c,d). Specifically, county-average rice yield is projected to
decrease by 18.2–32.7 per cent by 2070 under the HadGEM2-ES model and
11.0–20.5 per cent under the NorESM1-M model. We found that under
RCP2.6, the predicted reductions in rice yield in the long-term are similar in
magnitude to the predicted yield reductions in the medium-term.

6. Summary and conclusions

To develop efficient adaptation strategies to combat future climate change,
policy makers and crop scientists need to understand the impacts of global
warming on agriculture, which is particularly important for developing
nations. In this paper, we analysed a county-level panel of observed single-
season rice yield and daily weather outcomes in China, to estimate the link
between weather and rice yield and to predict the impacts of future warming
on rice yield. By accounting for nonlinearity, we showed a nonlinear
relationship between rice yield and temperature. The critical temperature
threshold and the optimal rainfall and sunshine duration for rice growth are
comparable with estimates for other crops (Schlenker and Roberts 2009;
Chen et al. 2016a,b). We showed that high temperatures above this critical
temperature threshold can cause severe damage to rice yield. These findings
are notable for the consistency across rice varieties, model specifications and
estimation strategies.
Using estimated coefficients of weather variables, we showed that holding

current rice growing seasons and regions constant, average rice yield in China
is projected to decrease by 10–19 per cent by 2050 and 11–33 per cent by 2070
under future climate change. The dominant factors driving future yield
reductions are the projected increases in temperature bins above 28°C (see
Table S3 in the Appendix S1). Here, one should note that we may have
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overestimated the projected damages to rice yield that can be attributed to
climate change for two reasons. First, coefficient estimates of temperature
variables used for prediction were obtained using the observed outcomes in
the past decade and cannot capture adaptations that may be undertaken by
farmers in the future. Second, when predicting the impacts of future warming
on rice yield, we assumed that the growing seasons and regions of single-
season rice remained unchanged in the twenty-first century. However,
farmers may change rice growing seasons and areas as an adaptation
strategy to cope with future warming.
Another major caveat is that our regression results may be subject to

omitted variable bias. Our analysis focused on the impacts of changes in

(a) Medium-term (HadGEM2-ES) (b) Medium-term (NorESM1-M)

(c) (d) Long-term (HadGEM2-ES)  Long-term (NorESM1-M)

Figure 3 Predicted impacts of future warming on rice yield.
Note: Panels (a) and (c) show predicted percentage changes in average rice yield in China and
the 95 per cent confidence intervals in the medium-term and the long-term, respectively, under
the HadGEM2-ES model. Panels (b) and (d) display the corresponding predictions under the
climate model NorESM1-M.
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temperature, rainfall and sunshine duration on rice yield and did not consider
the impact of CO2 fertilisation, air pollution and/or industrial pollution on
rice yield. Laboratory studies have found that higher CO2 fertilisation may
offset yield reductions due to warmer climate (Long et al. 2006). Several
studies have shown that rice yields decline with elevated ozone concentrations
in the atmosphere (Ainsworth 2008).
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