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A B S T R A C T   

This paper looks at the effects of air pollution on migration in China using changes in the average strength of 
thermal inversions over five-year periods as a source of exogenous variation for medium-run air pollution levels. 
Our findings suggest that air pollution is responsible for large changes in inflows and outflows of migration in 
China. Specifically, we find that a 10 percent increase in air pollution, holding everything else constant, is 
capable of reducing population through net outmigration by about 2.8 percent in a given county. We find that 
these inflows are primarily driven by well-educated people at the beginning of their professional careers. We also 
find a strong gender asymmetry in the response of mid-age adults that suggests families are splitting across 
counties to protect vulnerable members of the household. Our results are robust to different specifications, 
including a spatial lag model that accounts for localized migration spillovers and spatially correlated pollution 
shocks.   

1. Introduction 

Air pollution has been shown to have causal impacts along an array 
of health and economic dimensions: infant and adult mortality, hospi
talization rates, health expenditures, mental health, hours worked, labor 
productivity, labor market decisions, test scores, and income (e.g., see 
Chay and Greenstone, 2003; Graff Zivin and Neidell, 2012; Hanna and 
Oliva, 2015; Ebenstein et al., 2016; Borgschulte et al., 2018; Deryugina 
et al., 2019; Fu et al., 2021; Molina, 2021). Many of these studies take 
place in middle-income countries, where air pollution is now considered 
the biggest environmental risk to human health. 

These results suggest that the total cost of air pollution is quite large 
as a share of income per-capita, although an aggregation exercise is 
difficult due to differences in context, methodologies, and pollutant 
measures across studies. One solution to the aggregation problem is 
offered by the hedonic method which should reflect all costs of air 
pollution that are known to individuals (Chay and Greenstone, 2005). 
Bayer et al. (2009) note that costs associated with re-location might 
cause hedonic estimates to deviate from the willingness to pay for air 
pollution. In addition, housing markets and location decisions in the 
developing world are often distorted by market failures and regulation, 
causing further departures from the assumptions underlying hedonic 
methods. This is especially salient in China, where migration decisions 

have been heavily constrained by the household registration (hukou) 
system (Kinnan et al., 2018) and land markets are subject to the 
discretion of government officials and corruption (Chen and Kai-sing 
Kung, 2019). However, the perception of air pollution costs is still 
likely to be reflected in the key economic decisions behind hedonic 
methods: re-location and migration. 

Studying how migration decisions are affected by pollution in the 
developing world offers us a window into the air-pollution costs that are 
internalized by the population through semi-permanent adaptation 
measures. Also, zooming into the demographic composition of these 
flows helps us understand how the willingness to pay for air quality 
differs across socio-economic groups and how pollution-related migra
tion can change the composition of the labor force across cities (Hanlon, 
2020; Heblich et al., 2021). Our results also contribute to a sizable 
literature on the factors that determine migration decisions (Borjas, 
1999, 2015). In this literature, the emphasis has been placed on tradi
tional economic factors, such as income, wages, and networks (Clark 
et al., 2007; Pedersen et al., 2008; Kinnan et al., 2018). Although recent 
literature has paid more attention to environmental factors, most of 
these studies focus on weather (Feng et al., 2010, 2015; Cai et al., 2016a; 
Jessoe et al., 2018). As our results show, migration flows related to air 
pollution are of similar magnitude to those projected in response to 
plausible climate change scenarios (Feng et al., 2015). 
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To the best of our knowledge, we are the first to estimate the causal 
effect of air pollution changes on migration flows.1 The empirical 
challenges associated with studying migration responses to air pollution 
are two. First, as migration involves a large fixed cost and some of it is 
irretrievable, it is likely to respond slowly to changes in air pollution 
exposure. Thus, the empirical challenges of estimating the causal effects 
of air pollution on migration are similar to the challenges of estimating 
any medium to long-run impacts of air pollution: exogenous cross- 
sectional or mid-run variation in air pollution is hard to come by. In 
its absence, estimates may be confounded by unmeasured joint de
terminants of air pollution and migration. For example, economic ac
tivity, which has been shown to attract immigrants (Borjas, 1999; Clark 
et al., 2007), is also highly correlated with air pollution. Thus, as we 
demonstrate in this paper, an OLS regression of migration on air 
pollution yields a coefficient that could be (wrongly) interpreted as 
pollution attracting immigrants. The second challenge is data con
straints when studying migration decisions. Data that can track the 
residence of an individual over time is hard to come by at the scale that 
would be required to pick up responses of migration to air pollution. 

Our approach to overcoming the first empirical challenge is to use 
five-year variation in the average strength of thermal inversions within 
counties. A thermal inversion refers to an abnormal temperature- 
altitude gradient, where air gets hotter instead of cooler with altitude 
and traps pollutants near the ground. Thermal inversions have been used 
to study short-run effects of air pollution on infant and adult mortality 
(Arceo-Gómez et al., 2016; Jans et al., 2018), labor productivity (Fu 
et al., 2021), and mental health (Chen et al., 2018). Thermal inversions 
are a useful source of exogenous variation in air pollution as they emerge 
independently of pollution sources and human activity.2 

We overcome the second challenge, the data constraints on migra
tion decisions, by integrating aggregated and individual-level informa
tion from the Population Census in China to construct five-year flows of 
migration at the county level between 1996 and 2010. Using census 
questions that are common across all census rounds, we construct two 
separate measures of migration flows at the county level: net- 
outmigration and un-registered (floating) immigration. 

A recent paper, Khanna et al. (2021), has also documented the 
relationship between migration and pollution in the context of China, 
and estimates the welfare consequences of migration decisions that 
result in misallocation of human capital. Like our paper, Khanna et al. 
(2021) also uses thermal inversions as one of their identification stra
tegies. Our paper differs from Khanna et al. (2021) in two important 
ways (1) we study migration decisions since 1995 while they focus on 
recent migration, and (2) we restrict the variation in thermal inversions 
to the changes in frequency within a county. Our view is that 
cross-sectional variation in the frequency of thermal inversions can 
generate other differences across counties, e.g. in stringency of local 
environmental policy, which in turn may have an independent impact 
on migration flows.3 

Importantly, the use of within-county changes in thermal inversion 
patterns as a source of variation in air pollution means that the response 
we observe is one that corresponds to changes in pollution that are out of 
synchrony with respect to changes neighboring counties. This is an 
important consideration when interpreting our results, as pollution was 
on an upward trajectory over most counties simultaneously during the 
period of our study. Our estimates can thus be interpreted as the partial 

equilibrium effect of air pollution on migration. 
Our findings suggest that air pollution is responsible for significant 

inflows and outflows of migration in China’s counties. Specifically, we 
find that a 10 percent county-level increase in air pollution leads to a 2.8 
percent reduction in population. Of this change, about half corresponds 
to reduced immigration by floating migrants (about 70% of migrants in 
our data). When applying our point estimates to all county-level changes 
in air pollution that were uncorrelated across counties, we find that 
pollution of this sort can produce a standard deviation (SD) in net- 
outmigration rates of 3 percentage points, while the SD in observed 
net-outmigration rates is 16. 

We find that these migration responses are primarily driven by well- 
educated people at the beginning of their professional careers. We also 
find that females between 30 and 45 years of age, but not men, migrate 
in response to air pollution twice as much as the average adult. Our 
results are robust to different specifications, including a spatial lag 
model that allows for spillovers and spatial correlation, different 
weather controls, and different forms of error variance. 

2. Empirical background 

2.1. Migration and Household Registration System in China 

Migration typically refers to the permanent or long-term changes of 
the place of residence. Unlike other countries in which people can 
usually migrate freely, China implements the Household Registration 
System, or hukou system. The hukou system keeps a record of legal 
address and family relations for every citizen from birth to death. 
Furthermore, it divides people into rural and urban citizens according to 
their parents or the place of birth, and those in the cities usually enjoy 
privileges of local employment, education, health care, and social wel
fare. There are certain requirements for changing registered residence, 
such as owning a permanent house in the area where a person has 
migrated to, having a stable occupation and stable income, and having 
good education and talents.4 Therefore, there are two types of migrants 
in China. The floating population, or people who move while leaving 
their hukou at the origin and the registered migrants, who change their 
hukou to match their destination. 

In this paper, we have two measures of migration. The first is an 
approximate net-outmigration ratio over five years. Typically, the net- 
outmigration ratio is defined as the percent of population leaving the 
county net of new arrivals and deaths within a given period (Passel et al., 
2004; Feng et al. 2010, 2015). The second measurement of migration is 
destination-based floating immigration, or immigration of those who are 
surveyed away from their hukou. Section 3.3 details how we construct 
these measures. 

Fig. 1 depicts the migration patterns for each county in China over 
the period 1996–2010 measured by net-outmigration ratio. A positive 
net-outmigration ratio, (yellow) means that outflows are larger than 
inflows. A negative net-outmigration ratio (blue) means the opposite. In 
general, the metropolitan areas especially three economic regions in 
China–the Yangtze River Delta (Shanghai, Jiangsu, and Zhejiang), the 
Pearl River Delta (Guangdong), and the Jing-Jin-Ji Area (Beijing, 
Tianjin, and Hebei) and other coastal areas–attract a large share of mi
grants. There are a few exceptions to this pattern in the northwest (the 
Xinjiang Uyghur Autonomous Region, Qinghai, Gansu, and the Inner 
Mongolia Autonomous Region) and the Tibet Autonomous Region, 
where income is lower but inflows are plausibly driven by abundant 
natural resources and the China Western Development policy. 

1 We provide the formal mapping between our approach and a model of 
county-to-county flows in Online Appendix III.  

2 We confirm this in two ways: by showing that long-run thermal inversion 
and pollution trends are uncorrelated at the local level; and by comparing the 
frequencies of thermal inversions over the days of the week, which have 
different emission profiles (Jans et al., 2018).  

3 See Section 2.2 for a summary of environmental policies in China in 
response to air pollution. 

4 See http://www.gov.cn/xinwen/2014-07/30/content_2727331.htm (in 
Chinese). 
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2.2. Air pollution, awareness and avoidance behavior 

Over the past decades, air quality has increasingly deteriorated in 
China, causing increasing concern on China’s public health and eco
nomic development (Ebenstein et al., 2015). Fig. 2 plots the 
county-average concentrations measured in microgram per cubic meter 
(μg/m3) of PM2.5 in Panel A in China in each year over the period 
1980–2015. Two red vertical lines highlight our study period: 
1996–2010. The blue vertical line indicates the year of 2001, when 
China joined the World Trade Organization (WTO). The concentrations 
of PM2.5 have significantly increased over the period, in particular after 
2001, when China became “the world’s factory”. In 2015, the average 
concentration is 66.90 μg/m3, which is nearly 7 times higher than the 
standard of 10 μg/m3 of annual mean recommended by the WHO (WHO, 
2005). 

Even though most regions in China experienced increases in pollu
tion between 1996 and 2010, regional policy differences as well as 
differences in meteorological conditions led to substantial heterogeneity 
in pollution changes over time. Fig. 3 shows a map of local changes in 
pollution. As in our estimation we control for nation-wide changes as 
well as county fixed effects, this map is helpful to illustrate that there is a 
considerable amount of remaining variation in pollution. Out of this 
remaining variation, our IV strategy will ensure that we only use the one 
due to local variation in thermal inversion strength over time. 

Concerns about air pollution spurred environmental policy as early 
as the mid 80’s. In 1987, the Air Pollution Prevention and Control Law 
(APPCL) was enacted. In 1998, the Two Control Zone (TCZ) policy, 
which aimed to reduce SO2 and acid rain was implemented. 175 out of 
380 prefectures were designated as TCZ cities and faced tighter envi
ronmental regulations, such as using clean coal for power plants or 
installing sulfur-scrubbers.5 In 2000, China revised the APPCL, to con
trol air pollution in 47 key cities, which are mainly the municipal cities, 
provincial capitals, coastal cities, and key tourist cities. 66 additional 
cities were included in 2003. In 2005, the Chinese Government included 

“environmental protection” in the evaluation of government officials.6 

The Government also mandated public information about air pollu
tion starting in 1998. Importantly, the accuracy of early disclosed data 
has been put into question and recent papers suggest political motives 
behind the attempts to conceal high concentrations from official records 
(Ghanem and Zhang, 2014). In 1998, 113 key cities were required to 
disclose weekly pollution data, and in 2000, daily pollution data. During 
this period cities were only required to report the air pollution index 
(API) –a piece-wise linear transformation of PM10, SO2, and NO2. In 
2008, the U.S. Embassy started to report and publish PM2.5 concentra
tions. In 2013, the Ministry of Environmental Protection (now called 
Ministry of Ecology and Environment) started to report daily concen
tration for the six air pollutants including PM2.5, PM10, O3, SO2, NO2, 
and CO across more than 1000 pollution stations. 

The early adoption of some air pollution control policies as well as 
the data disclosure mandates, along with the efforts to conceal infor
mation, suggest that air pollution was a source of concern for the gov
ernment and the public in China at least as early as the mid 90’s. And, 
although in this study we will be measuring air pollution as PM2.5, which 
was not widely monitored until 2008, we show in the Online Appendix I 
(Tables A1–A3) that our results are qualitatively similar if we use other 
measures of pollution, such as SO2 and API, which were available 
earlier. 

Concerns about air pollution in China and elsewhere have been 
shown to motivate changes in behavior. Several studies have demon
strated that people engage in short-run avoidance behaviors such as 
staying indoors (Neidell, 2009) or purchasing particulate-filtering 
facemasks (Zhang and Mu, 2018) in a highly polluted day. Recent 
research has also shown that pollution concentrations can motivate 
medium-run investments such as home air purifiers (Ito and Zhang, 
2020). Our paper sheds light on the importance of migration, a long-run 
investment, in response to air pollution. 

Fig. 1. Migration in China measured by Net Outmigration Ratio (1996–2010). Notes: This figure depicts the average migration for each county in China over the 
period 1996–2010 measured by net outmigration ratio, which is the percent of population leaving the county net of new arrivals and approximate deaths. 

5 See http://www.gov.cn/xxgk/pub/govpublic/mrlm/201011/t20101122_6 
2944.html (in Chinese). Several studies have estimated the effect of this pol
icy on infant mortality (Tanaka, 2015) and foreign direct investment (Cai et al., 
2016b). 

6 See http://www.gov.cn/zwgk/2005-12/13/content_125680.htm (in 
Chinese). 
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3. Empirical strategy 

The goal of our empirical estimation is to capture the causal effect of 
5-year pollution changes on migration, which poses two important 
challenges. First, air pollution and economic activity are highly corre
lated. Thus, it is likely that those cities with high economic activity that 
attract immigrants by offering highly paid jobs are also those experi
encing high levels of air pollution. In fact, as we discuss in the results 
section, the correlation between air pollution and immigration is posi
tive even when controlling for county fixed effects. Second, overcoming 
the first challenge requires finding a random source of variation for air 
pollution. However, most reliably exogenous determinants of air 
pollution in the literature provide short-run variation in air pollution 
(over the course of days, weeks, or months); and we observe changes in 
migration over five-year periods. Most sources of long-run variation in 
air pollution, such as changes in local policy or economic fluctuations in 
neighboring regions, are likely to have independent effects on migration 
as they may shift labor market conditions. The combination of these two 
issues poses an important challenge for identification. 

3.1. Econometric model and identification 

Our approach is to use medium-run random variation in air pollution 

stemming from five-year fluctuations in the strength of thermal in
versions in a given county. Thermal or temperature inversions are a 
common meteorological phenomenon that leads to higher concentra
tions of pollutants near the ground. The mechanism through which this 
occurs is the following: under a stable (normal) temperature gradient, 
temperature decreases as altitude increases. Since air moves from hot to 
cool regions, air pollutants can circulate vertically decreasing air 
pollution concentrations near the ground. A thermal inversion, however, 
occurs when temperature increases with height (an “inverted” temper
ature gradient). This temperature profile traps pollutants near the 
ground as it prevents vertical circulation. Thermal inversions that trap 
pollutants may emerge from different meteorological sources: earth’s 
thermal infrared radiation during the night (radiation inversions), air 
descending under a surface high-pressure system (large scale subsidence 
inversion), cool ocean breezes moving inland (marine inversion), and air 
flowing down a mountain slope (small scale subsidence inversion) 
(Jacobson 2002). 

The idea to use thermal inversion as an instrumental variable for air 
pollution was first proposed by Arceo-Gómez et al. (2016), to estimate 
the effect of air pollution on infant mortality in Mexico City. This 
identification strategy has been subsequently used to explore the 
short-run effects of air pollution on children’s health in Sweden (Jans 
et al., 2018), on manufacturing labor productivity (Fu et al., 2021), and 
on mental health in China (Chen et al., 2018). This is the first study that 
uses thermal inversions to produce variation in air pollution over 
five-year periods. 

We estimate the following 2SLS model 

Mct = β0 + β1Pct + f (Wct) + γc + σt + εct (1)  

Pct =α0 + α1TIct + f (Wct) + γc + σt + μct (2)  

where Mct denotes two measures of migration in county c and period t: 
the net-outmigration ratio, which is the fraction of people leaving a 
county minus new arrivals and deaths, and destination-based immi
gration ratio, which is the fraction of people entering a county but with 
their hukou in the origin.7 We define each period as a five-year interval. 
Thus, we have three periods in our study: 1996–2000, 2001–2005, and 
2006–2010. 

Pct, measures the 5-year average concentration of PM2.5, and we treat 
it as endogenous.8 Equation (2) shows the first stage of our empirical 
strategy. We instrument air pollution with the average strength of 
thermal inversions over each five-year period, TIct, conditional on flex
ible functions of weather variables (Wct), county fixed effects (γc), and 
period fixed effects σt. Thermal inversion strength is defined using 
above-ground temperature minus ground temperature. A positive dif
ference indicates the existence of a thermal inversion and the magnitude 
measures the inversion strength. A negative difference indicates the non- 
existence of a thermal inversion. We keep the positive difference and 
truncate the negative difference to zero within each 6-h period. The 
strength measures of individual inversions are then averaged from 6-h to 
five-year period. In Section 3.3, we provide a detailed description of the 
source of information for thermal inversions as well as migration and 
pollution measures. 

As argued above, thermal inversions generate county-level variation 
in air pollution concentrations that is independent of structural sources 
of air pollution, including economic development. To illustrate the lack 
of correlation between thermal inversions and country-wide changes in 
air pollution, Panel A in Fig. 2 plots the county-average strength of 
thermal inversions in Celsius degrees (◦C) in China over the period 

Fig. 2. Time Trend of PM2.5, Thermal Inversions, and GDP in China 
(1980–2015). Notes: This figure depicts the national average of PM2.5 and 
thermal inversions in Panel A and GDP and thermal inversions in Panel B in 
each year during 1980–2015. 

7 Online Appendix III formally discusses how our first outcome variable, net- 
outmigration, relates to other measures of migration, such as county-to-county 
flows.  

8 Tables A1-A3 in the Online Appendix I show the results with other measures 
of air pollution such as SO2 and API. 
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1980–2015 along with PM2.5 levels. In contrast to air pollutants, there is 
no steep change in thermal inversion strength. This is especially 
important after 2001, when the steep increase in PM2.5 was tied to rapid 
economic growth, as shown in Panel B of Fig. 2. Although there appears 
to be no discernible trend in thermal inversions over time, we include 
period fixed effects, σt, in our main specification to be overly 
cautious.9,10 

There are a couple of additional considerations about thermal in
versions that are relevant for identification. First, although there is no 
plausible direct mechanism through which temperature above ground 
level could affect human health or human behavior, thermal inversions 
often coincide with weather patterns on ground level.11 Weather, in 
turn, may have direct impacts on our outcome of interest (Feng et al., 
2010). Therefore, we control for very flexible functions of weather at the 
ground level, including 1 ◦C daily temperature bins, and second-degree 
polynomials in precipitation, sunshine duration, relative humidity, and 
wind speed.12 Our identification strategy relies on the variation in the 
five-year average strength of thermal inversions net of weather variation 
at ground level. 

Second, there are some regions that are more prone to thermal in
versions than others, which causes permanent differences in air pollu
tion concentrations across regions. Permanent differences in pollution 
may induce differences in environmental regulation stringency, indus
trial composition, and self-selection that could impact migration rates. 
For example, heavily-regulated areas could result in more layoffs and 
job displacement. Constraining the thermal inversion variation we use 

to its deviations from county averages allows us to identify behavioral 
responses to pollution.13 

When aggregating thermal inversion strength into five-year aver
ages, we lose a substantial amount of temporal variation within 
counties. However, we show in Section 4 that there is still enough 
temporal variation to identify a strong first stage. This feature of thermal 
inversions is similar to other weather phenomena. For example, Burke 
and Emerick (2016) exploit time variation in 10-year temperature av
erages to study adaptation to climate change in agriculture. 

Finally, we discuss two spatial considerations when using thermal 
inversions as a county-level instrument: spillovers and spatial correla
tion. First, a “treated county” (a county that experiences an abnormally 
strong spell of thermal inversions in a five-year period) could have a 
spillover effects over neighboring counties if the bulk of the migration in 
response to the pollution shock in question goes to a small number of 
nearby counties. If this were the case, our estimates of the response to an 
independent pollution shock would be biased, as some of the neigh
boring counties would in fact have some form of treatment. Second, 
assuming that the thermal inversion shocks are independent across 
space might be problematic as neighboring counties might share geog
raphies and weather realizations that could make them similarly sus
ceptible to a thermal inversion shock at a given time. To address these 
concerns, we estimate a spatial lag model, where we explicitly account 
for shocks to nearby counties in the estimation and explore several 
standard error structures that can account for spatial correlation in 
Section 5. 

3.2. Thermal inversion-driven air pollution and migration decisions 

Although we show that thermal inversions are capable of producing 
air pollution fluctuations that can last as long as 5 years, an important 
feature of the variation in air pollution stemming from thermal in
versions is that it eventually reverts to the mean. Thus, not all rational 
models of avoidance behavior would predict a migration response to this 
specific source of air pollution variation. For example, consider a model 

Fig. 3. Pollution Changes in China (1996–2010). Notes: This figure depicts the changes in PM2.5 concentrations between the period 1996–2000 and 2005–2010 for 
each county in China. 

9 Our results are robust to the exclusion of period fixed effects and to the 
inclusion of region-specific period fixed effects.  
10 In addition, Figure A1 in Online Appendix I shows that 15-year-long 

changes in thermal inversion frequency or in thermal inversion changes are 
uncorrelated to 15-year-long changes in pollution and Figure A2 shows that 
pollution in China follows a very distinct pattern over the days of the week, 
whereas the thermal inversion frequency and strength looks identical over the 
days of the week. This test of exogeneity in thermal inversions is borrowed from 
Jans et al. (2018).  
11 See Figure A3 and its notes in Online Appendix I.  
12 We also explore the sensitivity of our results to variations in the functional 

forms of weather variables such as region-specific temperature effects. 

13 Figure A4 in Online Appendix I contrasts the cross-sectional variation with 
the within-county variation we are using in a map. 
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that assumes that (a) flow (per-period) utility is a function of contem
poraneous pollution exposure (e.g. the health effects of air pollution are 
temporary); (b) that individuals have perfect information on the source 
of observed air pollution variation (i.e., they know whether any devia
tion from the local mean is temporary or long-lasting); and (c) that in
dividuals know the dose-response function that relates air pollution to 
health, even for air pollution levels they have not yet experienced. In this 
model, individuals would move whenever the net present discounted 
value (NPDV) from moving to a new location exceeds the NPDV from 
staying in the current location. Temporary random shocks to pollution at 
the current location would not tip the balance in favor of moving away. 
However, models that allow for at least one of the following alternative 
assumptions would predict migration in response to the 5-year long 
fluctuations in air pollution generated by thermal inversions: (1) 
disutility from cumulative exposure, (2) imperfect information on the 
sources of stochastic changes in air pollution, and (3) imperfect infor
mation on the health effects of air pollution. We briefly explain these 
three alternative models below. 

Model 1 offers an alternative to assumption (a). In this model, an 
individual who believes that her current health or her family’s health 
depends on cumulative pollution exposure could be motivated to move 
earlier than she would have otherwise by a spike in pollution caused by 
thermal inversions. Similarly, a family who had planned to move from a 
polluted location could decide to stay longer after experiencing a five- 
year period with abnormally low pollution.14 

Model 2 relaxes assumption (b) by assuming that individuals cannot 
decompose changes in air pollution into permanent and transitory, 
which is a reasonable assumption in the absence of knowledge from an 
atmospheric and pollution dispersion model. In the absence of source of 
pollution information, individuals could use past observations to fore
cast future pollution using Bayesian updating. However, it is important 
to keep in mind that pollution is a dynamic process over our period of 
study. In other words, in addition to the transitory changes (e.g. stem
ming from thermal inversions), the mean and trend of air pollution are 
also changing over time due to changes in permanent sources of air 
pollution (see Fig. 2). A Bayesian forecasting process (e.g. Harrison and 
Stevens 1976) shows that a rogue observation, such as one coming from 
a year with abnormally high thermal inversions, can result in very 
different expectations for the air pollution trajectory depending on the 
agent’s beliefs about the source of variance of the underlying process. In 
a context where recent past deviations from the historical mean have 
signaled a shift in pollution trajectory, a new rogue observation stem
ming from a transitory change could be easily mistaken for a change in 
the mean or drift of the dynamic process.15,16 

Finally, Model 3 relaxes assumption (c) above. In this model, 
inversion-induced changes in air pollution could affect migration 
behavior if they inform individuals about the health effects of high 
pollution exposure. In a context where air pollution is increasing almost 
everywhere in China, a thermal inversion could provide a “window into 
the future” of pollution-related health damages that can motivate in
dividuals to move to less polluted regions. Importantly, this model 
would only predict migration responses to “positive” shocks to air 
pollution in the presence of an upward sloping trend in air pollution 
(like the one observed during this period).17 

A positive response of migration to thermal-inversion induced 
pollution shocks would suggest that one of the three models above is at 
play, but without information on expectations and beliefs, it is difficult 
to test across them. Nevertheless, in Section 7 we discuss suggestive 
evidence that rejects Model 3 by comparing responses to “positive” and 
“negative” pollution shocks generated by thermal inversions. 

The source of variation in air pollution that we use is also relevant for 
the interpretation of the magnitude of the results. Note that the thermal- 
inversion-related air pollution shocks that each county experiences are 
independent across counties. In fact, we test for independence of these 
shocks using a spatial lag model (Section 5). Thus, the effect we find can 
be interpreted as the migration response to a pollution shock in one 
county, everything else equal (i.e., keeping pollution constant every
where else). In reality, the bulk of pollution changes were in the form of 
long-run permanent trends that were highly correlated across counties. 
But, our estimates are only applicable to the variation in pollution that is 
uncorrelated across counties. We apply our estimates to the relevant 
variation in air pollution in Section 7 and we discuss the magnitude of 
the implied effects. 

3.3. Data sources and summary statistics 

3.3.1. Migration 
As discussed in Section 2, there are two types of migrants in China: 

those who migrate to a new county but do not possess the local house
hold registration (floating migrants), and those who migrate and possess 
the local household registration (registered migrants). 

We use population and death counts from the population census in 
China to calculate two measures of migration: net outmigration flows of 
all types of migration and immigration flows of floating migrants. For 
our study, we use 1% and 20% individual-level data randomly drawn 
from the 2000 and 2005 censuses respectively, and county-aggregated 
data in 1995 and 2010 from National Bureau of Statistics (NBS) of 
China.18 

The first migration measure, the net-outmigration ratio, is the 
percent of population leaving the county net of new arrivals and deaths. 
Since the population herein is based on individual’s physical presence in 
that county, the net-outmigration ratio essentially measures the migra
tion of both floating and registered migrants. We use the residual 
approach to calculate net-outmigration (see Passel et al., 2004; Feng 
et al., 2010; Feng et al., 2015). Specifically, we calculate: 

NetOutmig[15, 60]ct =
Pop[15, 60]ct − Pop[20, 65]c,t+5 −

̂D[15, 60]
Pop[15, 60]c,t

× 100%

(3)  

where NetOutmigc,t is the net-outmigration ratio for those aged [15, 60] 
during the five-year interval starting from year t in county c; 
Pop[15,60]c,t indicates the total population aged [15, 60] in county c at 
the beginning of the five-year interval that started in year t, while 
Pop[20,65]c,t+5 denotes the population of the same cohort five years 

later, and ̂D[15,60] represents an approximate measure of deaths for the 
same population during the five-year interval. Below we explain the 
data constraints on deaths and our approach to ensure that these con
straints do not affect our results. 

Because NBS only surveys deaths during the survey year, we are not 
able to obtain the death counts in the whole five-year period. Thus, we 
instead subtract deaths in the survey year times five. This approximation 
creates measurement error and will bias our estimates upwards if 
pollution is positively correlated with deaths. To evaluate the potential 
bias, we estimate the effect of air pollution on deaths for different age 

14 We thank Solomon Hsiang for highlighting the response of individuals at 
the margin.  
15 See Fig. 1 in Harrison and Stevens (1976).  
16 Yet another reason for why individuals may move in response to a 5-year 

period of abnormally high/low air pollution is projection bias, which has 
been well documented in the literature (see Conlin et al., 2007; Simonsohn 
2009; Busse et al., 2015; Chang et al., 2018). This non-rational explanation for 
the behavior we observe would be applicable even in the context of a static 
random process for air pollution.  
17 We thank Catherine Wolfram for highlighting this potential mechanism. 

18 To the best of our knowledge, no individual-level census data in 1995 and 
2010 are publicly available. 
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groups using the years for which deaths data are available (2000, 2005, 
and 2010). Specifically, we estimate model in Equations (1) and (2) with 
deaths in each of these years as the dependent variable and pollution in 
the past 1–5 years as explanatory variables. Results of these specifica
tions are shown in Tables A4. We find that air pollution exposure within 
the last four and five years has a positive and significant effect on current 
year deaths of total population (all ages), population under 15 years of 
age, and population above 60 years of age. However, we find a small and 
non-statistically significant response for those between 15 and 60 years 
of age. These findings across age groups are consistent with prior liter
ature on the effects of air pollution by age (Chen et al., 2013; Deryugina 
et al., 2019) and suggest that the bias caused by the measurement error 
in our net-outmigration measures should be minimal and statistically 
undetectable. 

Descriptive statistics are shown in Table 1. The mean five-year death 
rate in our period is 1.28 per thousand. On average the net-outmigration 
ratio is negative (− 9.17 per 100 inhabitants). Because this average is 
unweighted by population, the sign likely means that less populated 
counties, which are also more numerous, are predominantly experi
encing net inflows. The standard deviation of the net-outmigration is 
16.15, and shows there is substantial heterogeneity across counties. This 
is also clear from Panel A in Figure A5, which depicts the histogram of 
the net-outmigration. Although average net changes in population are 
modest, the top five percent of counties experience increases in popu
lation of 40 percent or more due to migration. Two advantages of this 
measure are that it captures both floating and registered migrants, and is 
not subject to misreporting hukou. 

Our second measurement on migration captures destination-based 
immigrants whose hukou are in their origin, or floating immigration. 
This measure is calculated from individual-level census in 2000 and 
2005, and county-level aggregated census in 2010.19 Importantly, this 
measure of migration is estimated directly from individual responses to 
a migration question, rather than from population counts at different 
points in time. Specifically, individuals who say their hukou does not 
correspond to their present location are subsequently asked when did 
they move to their present location. From previous work on Chinese 
migration (Ebenstein and Zhao, 2015) and from our calculations, we 
know that about 70 percent of migrants constitute floating migrants.20 

Since the majority of migrants do not transfer their hukou, our 
destination-based immigration captures the bulk of the response to air 
pollution. Table 1 shows an increasing trend in destination-based 
floating immigration during the period of our study, with an average 
of 6 floating immigrants per 100 people in our whole period. Studying 
this measure of migration has multiple purposes: it allows us to check for 
the pull effect of air quality, i.e., whether individuals pay attention to 
recent pollution levels at their destination. Second, it relies on in
dividual’s direct answer to a migration question rather than on an ac
counting exercise using population counts. Third, it helps us understand 
whether migration flows in response to air pollution are driven by 
registered migrants or are also driven by floating migrants. 

3.3.2. Air pollution 
The data on air pollution are derived from remote sensing AOD re

trievals, as these data are available for the full period of our study. AOD 
essentially measures the amount of sunshine duration that are absorbed, 
reflected, and scattered by the particulates suspended in the air, and can 
be used to estimate particular matter concentrations. The AOD-based 
pollution data closely match the ground-based monitoring station 
measures (Gupta et al., 2006; Kumar et al., 2011). 

We obtain the AOD data from the product M2TMNXAER version 
5.12.4 from the Modern-Era Retrospective analysis for Research and 
Applications version 2 (MERRA-2) released by the National Aeronautics 
and Space Administration (NASA) of the U.S.21 The data are reported at 
each 0.5◦ × 0.625◦ (around 50 km × 60 km) latitude by longitude grid in 
each month since 1980. The concentration of PM2.5 is calculated 
following Buchard et al. (2016).22 The monthly pollution data are then 
aggregated from grid to county. We then average to annual level across 
all months and further average to each five-year period for each county. 

We compare our AOD-based data with ground-based data during the 
period 2013–2015, when CNEMC and US Embassy started to report 
hourly concentration specific air pollutants and manipulation is not a 
major concern.23 We find no statistical difference between them con
ditional on county fixed effects. The details are discussed in Online 
Appendix II. The average concentration of PM2.5 during 1996–2010 is 
53.08 μg/m3, which is five times larger than the WHO’s standard. 

3.3.3. Thermal inversions and weather 
The data on thermal inversions are also from the MERRA-2. In 

particular, we utilize the product M2I6NPANA version 5.12.4, which 
divides the earth by 0.5◦ × 0.625◦ (around 50 km × 60 km) grid, and 
records the 6-h air temperature at 42 layers, ranging from 110 m to 
36,000 m.24 We aggregate all data from grid to county. Within each 6-h 
period, we calculate the temperature difference between the second 
layer (320 m) and the first layer (110 m). If the difference is positive, 
there exists a thermal inversion and the difference measures the inver
sion strength. If the difference is negative, we code it as zero. We then 
average the inversion strength across all 6-h lapses within each five-year 
period. The average strength during our study period is 0.22 ◦C. During 
1996–2010, average thermal inversion strength appears to be increasing 
at a very slow pace. 

The weather data are obtained from the China Meteorological Data 
Sharing Service System (CMDSSS), which records daily minimum, 
maximum, and average temperatures, precipitation, sunshine duration, 
relative humidity, and wind speed for 820 weather stations in China.25 

4. Results 

Table 2 presents the first-stage estimates of the effect of thermal 
inversions on PM2.5 concentrations (Equation (2) in Section 3). Column 
(1) shows the results without population weights, while column (2) uses 
population aged 15 to 60 in 1995 to weight the regression. Table 2 also 
reports the Kleibergen-Paap (KP) F-statistics, and all of them are well 
above Stock and Yogo’s 10% maximal bias threshold of 16.38. All re
gressions control for county and period fixed effects as well as weather 
controls, so it is most helpful to think about residualized changes in 
pollution in response to residualized changes in thermal inversions 
when interpreting the magnitude of these coefficients. One can multiply 
the point estimates by 0.004 (0.22/53.08) in order to obtain an elas
ticity. The point estimates in column (1) suggest that a 1 percent in
crease in residualized average thermal inversion strength leads to a 0.3 

19 Details are available in Online Appendix II. Note that we cannot calculate 
origin-based outmigrants because aggregated data in 2010 only report the 
destination-based immigrants.  
20 Our calculation comes from the 2000 Census, which has information on 

both floating and registered migration. 

21 The data can be downloaded at https://disc.gsfc.nasa.gov/datasets 
/M2TMNXAER_5.12.4/summary. Although satellite-based AOD measures are 
only available from 2000 on, the MERRA-2 product that we use for this paper 
also incorporates AOD measures from Advanced Very High Resolution Radi
ometer (AVHRR) as inputs, which are available for the previous decade.  
22 MERRA-2 also reports SO2 and we can compute API from its components.  
23 For real-time air pollution and the geographic locations of the eight 

monitoring stations, please see http://www.cnemc.cn/from CNEMC and 
http://www.stateair.net/web/historical/1/1.html from US Embassy.  
24 The data can be downloaded at https://disc.gsfc.nasa.gov/datasets 

/M2I6NPANA_V5.12.4/summary.  
25 CMDSSS was developed and is currently managed by the Climatic Data 

Center, National Meteorological Information Center, China Meteorological 
Administration. See http://data.cma.cn/for details. 
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percent increase in PM2.5. 
To put these estimates in perspective, average PM2.5 pollution in 

China has increased by about 7.6 μg/m3 every five years from 1995 to 
2010, with the bulk of this change happening between 2000 and 2010. A 
within-county change in (residualized) 5-year average thermal inversion 
strength from the 25th (5th) percentile to the 75th (95th) percentile 
would have produced an increase in average air pollution over a five- 
year period of 1.23 (3.38) μg/m3 of PM2.5; that is 16 (44) percent of 
the observed average change in air pollution occurring over the same 
period. This shows that, while thermal inversions are obviously not the 
predominant driver of air pollution changes in this period, their effects 
are not negligible compared to overall changes. 

Table 3 reports the estimated effects of air pollution on migration 
flows. Panel A shows estimates of the effect of air pollution on net- 
outmigration adjusting for deaths.26 Column (1) reports the fixed ef
fects (FE) estimates, while columns (2)–(4) report the IV estimates. 
Columns (3) and (4) include population weights. Column (4) includes 
period-by-province FE while the rest include only period FE. 

The FE estimates suggest a positive and significant correlation be
tween air pollution and net-outmigration after controlling for weather 
variables as well as county and period fixed effects. Note that pollution is 
endogenous in this specification and may be correlated with other 

determinants of migration that vary over time within counties–such as 
wage, GDP, job opportunities, and infrastructure–which would result in 
omitted-variable bias. As many of these omitted factors are likely to 
attract migrants, the bias is likely negative. The FE estimates may also be 
biased downwards due to reverse causality, as positive net-outmigration 
flows may bring down pollution. 

Consistent with the expected bias just discussed, the IV estimates of 
the effect of air pollution on net-outmigration are larger in magnitude. 
Our preferred specification is in column (3), which weights the re
gressions using population in 1995. Weighting is important as it results 
in a more efficient variance estimator and in point estimates that reflect 
the migration flows faced by a representative individual. The point es
timate for the weighted IV effect is 0.53, nearly twice the size of the FE 
effect. Column (2) of Table 3 shows the same specification without 

Table 1 
Summary statistics.  

Variable Unit 1996–2010 1996–2000 2001–2005 2006–2010 

Mean SD Mean SD Mean SD Mean SD 

Migration 
Net-outmigration ratio (death adjustment) % − 9.17 16.15 − 6.61 9.89 − 5.82 16.39 − 15.08 19.07 
Immigration ratio % 6.01 10.73 3.41 6.16 4.20 7.49 10.40 14.90 
Immigration ratio by origin 

Within county % 4.45 4.53 2.50 2.23 3.02 3.48 7.84 5.20 
Across county within province % 3.66 6.72 2.37 4.10 2.36 4.16 6.25 9.56 
Across county outside province % 2.58 5.93 1.72 4.06 1.88 4.71 4.15 7.94 

Death rates ‰ 1.28 0.54 1.31 0.39 1.35 0.61 1.19 0.57 
Air pollution 
PM2.5 μg/m3 53.08 27.93 42.68 19.85 50.89 24.53 65.67 32.76 
Thermal inversion 
Strength ◦C 0.22 0.19 0.21 0.19 0.22 0.20 0.23 0.20 
Number of inversions Days 107.65 59.00 107.30 56.87 107.03 59.63 108.62 60.47 

Notes: The unit of observation is county-period (five years). Number of observations is 7911. Net outmigration ratio is defined as the percent of population aged 15 to 
60 leaving the county net of new arrivals and approximate deaths. Immigration ratio is defined as the percent of population aged 15 to 60 entering the county with their 
hukou in the origin. Death rates are for population aged 15 to 60. Pollution data are reported at monthly level, and then are averaged to each year and further to each 
period. Thermal inversion strength is calculated using the temperature difference in altitudes of 110 and 330 m within each 6-h period, and then is averaged for each 
period. Positive difference indicates an existence of a thermal inversion with magnitude representing the strength, while negative difference indicates a non-existence 
of a thermal inversion and is truncated to zero. Number of inversions is calculated using annual days with thermal inversions, and then averaged to the five-year period. 

Table 2 
The effect of inversions on PM2.5 (first stage).   

(1) (2) 

Thermal inversions 78.6938*** 82.0176*** 
(5.4654) (5.1621) 

KP F-statistics 865.2 984.9 

Observations 7911 7911 
Weighting No Yes 

Notes: The dependent variable is PM2.5. Regression models are estimated using 
Equation (2) and include county FE and period FE. Weather controls include 
temperature bins within 1 ◦C, second-order polynomial in precipitation, hu
midity, wind speed, and sunshine durations. Regression models are weighted 
using population aged 15 to 60 in 1995 in column (2). Standard errors are listed 
in parentheses and clustered at county level. *p < 0.10, **p < 0.05, ***p < 0.01. 

Table 3 
The effect of PM2.5 on migration.   

FE IV 

(1) (2) (3) (4) 

Panel A: Net-Outmigration ratio 
PM2.5 0.2967*** 0.5944*** 0.5314*** 0.9348** 

(0.0589) (0.1657) (0.1761) (0.4119) 

Panel B: Immigration Ratio 
PM2.5 0.1258*** − 0.2516*** − 0.3246*** − 0.4275** 

(0.0299) (0.0679) (0.0820) (0.1675) 

Observations 7911 7911 7911 7911 
KP F-statistics – 205.9 250.7 120.4 
Period FE Yes Yes Yes No 
Per. by Province FE No No No Yes 
Weighting Yes No Yes Yes 

Notes: The dependent variables are net outmigration ratio in Panel A and 
destination-based immigration ratio in Panel B. Net-outmigration ratio is 
defined as the percent of population aged 15 to 60 leaving the county net of new 
arrivals and approximate deaths. The destination-based immigration ratio is 
defined as the percent of population aged 15 to 60 entering the county with their 
hukou in the origin. Column (1) presents fixed effects estimates, and columns 
(2)–(4) present IV estimates in which we instrument PM2.5 using thermal in
versions strength. Weather controls include temperature bins within 1 ◦C, 
second-order polynomial in precipitation, humidity, wind speed, and sunshine 
durations. All regressions include county FE. Regression models are weighted 
using population aged 15 to 60 in 1995 in columns (1), (3), (4), and (6). Stan
dard errors are listed in parentheses and clustered at county level. *p < 0.10, **p 
< 0.05, ***p < 0.01. 

26 Results look similar without the death adjustment, which is consistent with 
the lack of significant effects of air pollution on deaths (Section 3). Results 
without dead adjustment are shown in Table A6. 
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population weighting. Results vary little with respect to column (3), 
suggesting heterogeneity by population density is not very important. 
Finally, column (4) shows the IV results when we include period-by- 
province FE. This specification limits the time variation in pollution to 
changes net of province-level changes. We find that the results are 75% 
larger than when we control for period FE. If costs of migration are 
smaller within the same province, it is reasonable to see a stronger 
migration response to pollution changes relative to province-level 
changes.27 

We now turn to our results on floating immigration presented in 
Panel B of Table 3. There are two important differences in the inter
pretation of these results with respect to Panel A. First, destination- 
based immigration corresponds to floating immigration only. This 
means that registered immigration, which is costlier (Kinnan et al., 
2018), is excluded from this measure (see Section 3). Second, the fact 
that we are now measuring only the inflow as opposed to the net-outflow 
has a couple of important implications: A) if individuals value air 
quality, then we expect the opposite sign to the effect of pollution in 
Table 3, and B) finding a causal response of immigration flows to 
destination air pollution requires individuals to be aware of pollution 
changes in the place where they are planning to move to, as opposed to 
pollution changes in the county where they live. As we show next, we 
find results that are consistent with people moving to counties where 
pollution has improved. 

Panel B has a similar structure to Panel A. The FE estimates in column 
(1) suggest a significantly positive relationship between air pollution 
and immigration, the opposite sign to what one would expect from the 
causal relationship. It appears that in the case of immigration, the bias 
stemming from confounding factors is large enough to flip the sign of the 
expected causal relationship. When we instrument air pollution using 
strength of thermal inversions, we find significantly negative effects of 
air pollution on immigration, which is consistent with individuals 
valuing clean air. Our preferred estimates in column (3) imply that a 10 
percent reduction in PM2.5 (5.31 μg/m3) brings in 1.7 people per 100 
inhabitants. The smaller magnitude of the effects compared to Panel A is 
expected as net-outmigration captures the effect of air pollution on both 
inflows and outflows, while immigration only captures the effect on 
inflows. In addition, registered migration (which is not captured by this 
measure) is less than one third of overall migration (see Section 3.3.1). 
Column (2) shows the results without population weights. In the case of 
destination-based immigration, the immigration effects faced by the 
average person in China seem to be slightly larger than those faced by 
the average county. The results in column (4), which further restrict 
pollution and thermal inversion variation over time, show a similar 
pattern to net-outmigration flows: the inflow of immigrants is larger 
when a county presents an air pollution reduction that is out-of-the- 
norm with respect to the same province, as opposed to the country as 
a whole. 

Taken together, the results of Table 3 imply that individuals respond 
both to changes in air pollution at their home county as well as changes 
in air pollution in destination counties. In addition, responses appear to 
be stronger when the change in air pollution is out-of-the-norm with 
respect to counties in the same province. Section 7 interprets the mag
nitudes of the migration response effects we find in the context of air 
pollution variation over time and observed migration rates. It also dis
cusses additional results that help us understand the mechanisms 
driving this causal relationship. 

5. Robustness 

Here we discuss the results of several robustness checks. Tables A7 in 
the Online Appendix I shows several of these additional results and 

compares them to our baseline. We first explore the robustness of our 
results to alternative forms of clustering (column (2)). Clustering errors 
at the prefecture level (which has 10–20 counties) instead of the county 
level results in standard errors that are about twice as large, but the 
effects are still statistically significant at the 5% level. The KP F-statistic 
is also still above the Stock-Yogo critical value for 10% relative bias. Our 
results are also robust to replacing the baseline weights (1995 popula
tion) with average population during the 1996–2010 period (column 
(3)). 

We also show that our results are robust to using different layers of 
temperature to calculate thermal inversions and to using number of days 
with thermal inversion as our instrumental variable instead of inversion 
strength (columns (4) and (5)). Our results are robust to these two 
alternative definitions of inversions. 

We also test the robustness of our results to region specific weather 
functions. As Figure A3 in Online Appendix I demonstrates, the rela
tionship between weather and inversions is different for different re
gions. If there was a spurious correlation pattern of temperature and 
migration that coincided with this heterogeneity, temperature could still 
bias our results. When we include interactions between all of our stan
dard weather controls and six region dummies, our results are very 
similar to our baseline results (column (6)). 

Finally, Tables A8-A10 show the results of a spatial lag model that 
addresses several potential issues with our estimates stemming from the 
spatial proximity of some of these counties. First, if the bulk of migration 
in response to an air pollution shock goes to (or comes from) a small set 
of counties in close proximity to the shock-receiving county, our iden
tification strategy would violate the stable unit treatment value 
assumption (SUTVA). If on the other hand, the migration response is 
dispersed over numerous counties, then SUTVA would not be violated. 
Controlling for a spatial lag of migration is a useful to test this 
assumption. Because migration shocks to nearby counties are also 
endogenous, we generate an instrument for the spatial lag of migration 
using the analogous spatial lag of thermal inversions. The results of this 
model are presented in Tables A8, where the spatial lag is defined as the 
inverse distance weighted average of migration flows to neighboring 
counties. Columns (1)–(4) show the results of this model with net out
migration as the dependent variable and columns (5)–(8) show the re
sults for immigration of floating migrants.28 The effect of local pollution 
on migration in all models remains of roughly the same magnitude as in 
our baseline and has similar levels of significance. In addition, the effect 
of the spatial lag of migration flows is insignificant in all models. 
Together, these results suggest that thermal inversion shocks are well 
spread out across counties as opposed to concentrated in a few neigh
boring counties. 

A second issue generated by spatial proximity of the counties is that 
thermal inversions could be spatially correlated. Although clustering at 
the prefecture level (like we do in Table A7) could help approximate the 
correct error structure in this case, a spatial lag model offers an alter
native way of accounting for this spatial correlation. Tables A9 and A10 
estimate the first stage and reduced forms of our IV model in Table A8 
using the correct variance structure. In all cases the main results do not 
differ from our baseline, suggesting that localized spillovers and spatial 
correlation in the error term are not affecting our main estimates. 

27 The fact that migration responses within a province are stronger than across 
provinces is confirmed by our immigration results by origin shown in Table 5. 

28 Standard errors are clustered at either the county level (columns (1), (2), 
(5), and (6)) or at the prefecture level (columns (3), (4), (7), and (8)). We do not 
use a spatially decaying correlation structure for the variance as the code that 
incorporates both IV and this variance structure is currently unavailable. 
However, a variance structure with a spatially decaying correlation is studied in 
Tables A9 and A10, which correspond to the first stage and the reduced form of 
the IV model in Table A8. 
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6. Heterogeneity by demographic groups and origin 

Different individuals may have different tradeoffs between perceived 
harm from air pollution and economic opportunities. For example, we 
expect that highly educated individuals will be better informed about 
potential harm from air pollution exposure and will also have lower 
costs of migration, as registered migration is within reach for this de
mographic group. Heterogeneity in the response could also stem from 
differences in vulnerability to air pollution: children and elderly face 
higher health impacts from poor air quality. 

In this section we exploit information on demographic characteris
tics to explore whether our main result masks any heterogeneity that is 
consistent with these relative tradeoffs. Table 4 shows results by gender, 
education and age (the categories for which net-outmigration flows 
could be constructed from the census). As usual, the units of the co
efficients are in net-outmigrants per 100 people associated with one μg/ 
m3 of PM2.5. We focus on three important observations from these re
sults. The first observation is that education significantly increases the 
migration response to air pollution. Having a college degree makes it 
nearly twice as likely to migrate in response to air pollution compared to 
the average person (0.93 vs. 0.53). And although the response to air 
pollution is significant across all education levels for female migrants, 
male migrants with primary education or less show no statistically sig
nificant response. The education gradient of our response is consistent 
with either the perceived benefits of air pollution rising with education, 
the cost of migration falling with education, or both. Importantly, these 
findings suggest that air pollution may have important effects on the 
composition of the labor force, causing a “brain-drain effect” (Fischer, 
2003). In addition, our findings support other recent literature that finds 
air pollution changes the socioeconomic composition of neighborhoods 
(Hanlon, 2020; Heblich et al., 2021). 

The second observation is that male and female responses are not 
consistent across age groups. The starkest difference is between male 
and female responses between the ages of 30 and 45 years of age. For 
this age group, we find the smallest (and non-significant) response from 
men (0.21) and the highest response from women (1.12). This pattern 
could emerge from a lower labor force participation of women combined 
with the ability of families to live in separate counties (Chang et al., 
2011). Since young children are particularly vulnerable to air pollution, 
splitting across counties would allow families to maximize both health 
benefits and economic gains, conditional on low female labor 
participation. 

The third and last observation is that the age gradient has the 
opposite sign to what we would expect based on vulnerability to air 
pollution for men: the youngest working-age individuals are more likely 
to migrate compared to the oldest (0.79 vs. 0.36). This suggests that the 
cost of migration, which is likely smaller for those who are just entering 
the labor force, plays an important role in migration decisions. 

Our second measure of migration flows, floating immigration, allows 
us to further explore the influence of migration costs in responses to air 
pollution. The data on destination-based immigration classifies the ori
gins of immigrants by whether they come from the same province or 
from other provinces. Table 5 reports our results by these two categories. 
We find significantly negative effects of pollution on destination-based 
immigration for both movements across counties within a province 
and movements across provinces (cols. (2) and (3)). However, migration 
within a province appears to be twice as large as migration across 
provinces.29 This is also consistent with our observation on the gender 
imbalance, which suggests that heads of household may be staying 

behind. If this were the case, remaining within the same province might 
be less costly for the family. 

The fact that internal migration in response to air pollution tends to 
happen disproportionately within a province also informs the interpre
tation of the magnitude of our main point estimates. These results sug
gest that individuals pay more attention to deviations from province- 
level changes in air pollution compared to deviations from country- 
level changes. In the next Section we apply our main point estimates 
to changes in air pollution that deviate from province level changes in 
order to assess the amount of migration that can be attributed to air 
pollution. 

7. Magnitude and interpretation 

Our preferred estimate from Panel A in Table 3 indicates that a ten 
percent increase in PM2.5 (5.31 μg/m3) reduces population by 2.8 per 
100 inhabitants. This is a large effect on migration when compared to 
the standard deviation of net-outflows: 16.15%.30 Although it is 
tempting to multiply this point estimate by the increase in air pollution 
that the average county in China experienced over the 15 years of our 
study: 27 μg/m3 (60%), we refrain from this extrapolation exercise as 
our estimates are not predictive of migration in response to country- 
wide changes in air pollution. Because the time variation in the fre
quency of thermal inversions is as if random, our estimate corresponds 
to the response to pollution changes that are out-of-the-norm with 
respect to country-wide changes. 

To assess the amount of migration that could be attributed to 
pollution shocks of a similar nature to our identifying variation, we 
instead apply our point estimates to the changes in air pollution that 
remain after removing the country-wide trend in pollution and the 
province-level trends in pollution. Panel A of Fig. 4 shows the distri
butions of predicted migration responses when using only the changes in 
air pollution that exclude country-wide level changes (black dashed 
line) and province-level changes (gray dotted line). When compared to 
the distribution of naïve predicted responses (solid gray line), which 
uses observed changes in air pollution, these two distributions have a 
higher mass of small (close to zero) migration responses. 

Panel B of Fig. 4 plots the average prediction of the migration 
response to pollution for each corresponding change in air pollution 
between periods. The plus-sign markers show a naïve prediction ob
tained by multiplying our point estimate of the effect of air pollution on 
net-outmigration (0.53 from Table 3) times the change in air pollution 
concentration (the number in the horizontal axis). This prediction is 
naïve because the bulk of these changes in air pollution happened 
simultaneously across the country and therefore would not generate 
different changes in pollution across counties. In contrast, the triangles 
and circles predict average net-outmigration effects using only the left- 
over variation in air pollution after subtracting national and province 
level changes respectively. Since, the bulk of the migration response to 
air pollution happens within a province (Table 5), we think that using 
only changes in air pollution relative to other counties within the same 
province (circles) is a reasonable way to illustrate the magnitude of our 
estimates. Each point marked by a triangle and circle is constructed by 
multiplying residual changes in air pollution times the point estimate 
that controls for period by province FE (0.9348 in col. (4) of Table 3), 
and then averaging these county-period predictions within each bin of 
observed air pollution changes. To facilitate the interpretation, the 
graph also shows the share of county-period observations that experi
enced those changes (gray bars) and the observed (raw) net- 
outmigration rates averaged over the same bins (solid line with no 
markers). 

First, let us interpret raw data depicted by the solid line. This line 29 Floating immigration within county is also available. Since our air pollution 
level is at the county level, we would not expect an effect on within county 
migration, and we indeed find no empirical response. This result serves as a 
robustness test on the validity of the exclusion restriction of our instrument. 
Results are not reported, but available upon request. 

30 The average net-outflow is regularly around zero, as most migration hap
pens within the country’s boundaries. 
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illustrates the observed correlation between net-outmigration and 
changes in air pollution. Note that the median county experienced a net 
inflow of population (negative net outmigration). Also note that a pos
itive correlation between changes in air pollution and net outmigration 
is only evident for very large changes in air pollution. 

Second, we can compare the predictions based on deviations from 
the national and province-level changes in air pollution. The predicted 
migration responses to pollution of county-periods that had changes 
between 0 and 20 μg/m3 are balanced around zero, especially when we 

remove the province-level variation (circles). In contrast, the predicted 
net-outmigration responses in counties that experienced overall changes 
in air pollution above 25 μg/m3 are positive and increasing in the 
magnitude of the change. This is because large (and very small or 
negative) changes are more likely to be out-of-the-norm with respect to 
other counties in China and counties within the same province. Again, 
the average predicted responses to pollution mirror what happened with 
observed net-outmigration rates for these range of changes in air 
pollution. 

Having discussed the magnitude of migration flows implied by our 
estimates, we now turn to some additional results that help us under
stand the motivation behind the observed migration response. First, we 
explore the role of available air pollution information. Second, we 
explore whether people react symmetrically to positive and negative 
changes in air pollution, which sheds light on whether individuals have 
knowledge on the dose-response function that maps air pollution to 
health (see Section 3). Finally, we explore whether migration responses 
are driven by individually motivated behavior or by employers changing 
location. 

To study the role of available information on air pollution, we 
explore whether counties that introduced air pollution monitors over 
time experienced sharper responses to air pollution. Note that these 
results are only suggestive, as the presence of monitors could also cap
ture heterogeneity along other dimensions, such as stringency of air 
pollution regulation. In addition, recall that there is ample evidence that 
some provinces manipulated air pollution information (Ghanem and 
Zhang 2014). The number of cities with API data available increased 

Table 4 
The effect of PM2.5 on net outmigration ratio: By education, gender, and age.  

Panel A: By Education and Gender  

All gender Males Females 

Full Primary Middle College Full Primary Middle College Full Primary Middle College 

sample and 
below 

school and 
above 

sample and 
below 

school and 
above 

sample and below school and 
above 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

PM2.5 0.5314*** 0.4723** 0.5736** 0.9314** 0.3600* − 0.2229 0.6480*** 0.9192** 0.6977*** 0.6975*** 0.7910*** 1.2369** 
(0.1761) (0.2350) (0.2427) (0.4433) (0.1935) (0.3219) (0.2429) (0.4315) (0.1846) (0.2169) (0.2742) (0.5347) 

KP F- 
stat. 

250.7 300.9 224.2 169.7 250.7 305.3 226.6 171.6 250.7 304.1 224.4 172.1 

Obs. 7911 7662 7673 7617 7911 7699 7692 7621 7911 7712 7655 7595 
Mean 

[SD] 
of D. 
V. 

− 9.17 
[16.15] 

− 1.59 
[10.06] 

− 11.20 
[24.64] 

− 17.03 
[40.44] 

− 10.07 
[18.84] 

− 7.18 
[40.02] 

− 7.05 
[22.75] 

− 10.01 
[32.91] 

− 8.68 
[16.64] 

− 0.04 
[25.49] 

− 12.40 
[27.52] 

− 18.97 
[43.68] 

Panel B: By Age and Gender  

All gender Males Females 

Age 15-60 Age 15- 
30 

Age 30-45 Age 45- 
60 

Age 15- 
60 

Age 15- 
30 

Age 30- 
45 

Age 45- 
60 

Age 15-60 Age 15-30 Age 30-45 Age 45-60 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

PM2.5 0.5314*** 0.7446** 0.6905*** 0.0470 0.3600* 0.7865** 0.2198 0.3536 0.6977*** 0.8583*** 1.1164*** − 0.2131 
(0.1761) (0.3173) (0.2089) (0.2555) (0.1935) (0.3774) (0.2282) (0.2737) (0.1846) (0.3274) (0.2295) (0.3034) 

KP F- 
stat. 

250.7 269.3 255.5 281 250.7 269.3 255.5 281.1 250.7 269.2 255.5 281 

Obs. 7911 7911 7911 7911 7911 7911 7911 7911 7911 7911 7911 7911 
Mean 

[SD] 
of D. 
V. 

− 9.17 
[16.15] 

− 1.07 
[31.16] 

− 7.62 
[23.15] 

− 13.24 
[13.21] 

− 10.07 
[18.84] 

− 4.25 
[40.15] 

− 8.61 
[25.31] 

− 16.21 
[14.65] 

− 8.68 
[16.64] 

− 0.54 
[30.65] 

− 9.37 
[26.98] 

− 16.65 [13.02] 

Notes: The dependent variable is net outmigration ratio by each group. Net outmigration ratio is defined as the percent of population aged 15 to 60 leaving the county 
net of new arrivals and deaths. Regression models are estimated using Equation (1) and include county fixed effects, period fixed effects, and weather controls. 
Regression models are weighted using population for each group in 1995. Standard errors are listed in parentheses and clustered at county level. *p < 0.10, **p < 0.05, 
***p < 0.01. 

Table 5 
The effect of PM2.5 on immigration ratio: By origins.   

Total 
immigration 

Across county within 
province 

Across county 
outside province 

(1) (2) (3) 

PM2.5 − 0.3246*** − 0.1780*** − 0.0851** 
(0.0820) (0.0595) (0.0409) 

Observations 7911 7911 7911 
Mean [SD] of 

D.V. 
6.01 [10.73] 3.66 [6.72] 2.58 [5.93] 

Notes: The dependent variable is destination-based immigration ratio, which is 
defined as the percent of population aged 15 to 60 entering the county with their 
hukou in the origin. Column (1) includes all migrants regardless of origins. 
Column (2) includes migrants whose origins and destinations are in the same 
province. Column (3) includes migrants whose origins are outside the province 
of the destination. Regression models are estimated using Equation (1) and 
include county fixed effects, period fixed effects, and weather controls. 
Regression models are weighted using population aged 15–60 in 1995. Standard 
errors are listed in parentheses and clustered at county level. *p < 0.10, **p <
0.05, ***p < 0.01. 
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from 47 in 2000 to 86 in 2010. Consistent with information on air 
pollution influencing migration decisions, we find a much larger effect 
for cities with API data.31 For example, we find that the effect on 
net-outmigration ratio is twice as large for the 86 cities with API data in 
2010 than in the remaining 250 cities. The same conclusion holds for the 
immigration ratio. 

Even when individuals have information on the air pollution they are 
exposed to, they could lack information on the dose-response function 
that maps air pollution to health. Being exposed to air pollution shocks 
that are out-of-the-norm could provide a window into the health they 
will experience as pollution levels continue to increase. As discussed in 
Section 3, this is one plausible reason why transitory shocks to air 
pollution are observed to cause migration responses (Model 3). We can 
test for the presence of this information channel by comparing migration 

responses to positive (informative about health response to future 
exposure) and negative (non-informative about health response to 
future exposure) shocks to air pollution generated by thermal in
versions. Table A12 in Online Appendix I tests for this asymmetry using 
the reduced form specification. Here, we distinguish positive from 
negative shocks by comparing the 5-year average strength or frequency 
of thermal inversions with the county-specific mean for the whole 15- 
year period. Our results show no differential response between posi
tive and negative thermal inversion shocks. There is also no discrete 
jump in migration for thermal inversion shocks above the mean with 
respect to shocks below the mean. Thus, by ruling out Model 3, these 
results suggest that individuals are either not able to distinguish be
tween temporary and permanent changes to pollution (Model 2) or that 
migration decisions depend on cumulative exposure (Model 1). 

Finally, we look for evidence on whether relocation decisions are 
driven by individual motivation or are responding to firms (employers) 
or government policy. We utilize the Chinese Industrial Enterprises 

Fig. 4. Effect Magnitude. Notes: Panel A shows the 
distribution of the predicted migration responses to 
PM2.5. The dotted (dashed) line shows the distribu
tion of predicted effects on net-outmigration to 
changes in PM2.5 net of national (province)-level 
changes. The gray line shows the corresponding dis
tribution if we apply our point estimates to raw 
changes in PM2.5. Panel B shows that predicted net- 
outmigration responses to air pollution are only 
large at the right tail of the distribution of PM2.5 
changes. The triangle (circle) markers show averages 
of predicted net-outmigration responses to PM2.5 net 
of national (province)-level changes. The plus-sign 
markers show the corresponding averages if we use 
raw 5-year changes in air PM2.5. The bars show the 
share of county-period observations in each raw 5- 
year PM2.5 change bin.   

31 Results are available in Table A11 of Online Appendix I. 

S. Chen et al.                                                                                                                                                                                                                                    



Journal of Development Economics 156 (2022) 102833

13

Database, also used in Fu et al. (2021) to study the effects of pollution on 
firm-level productivity. This dataset provides firm location and covers 
all state-owned enterprises and non-state firms with sales above CNY 5 
million. Similar to our migration measure, we define five years as a 
period, namely, 1998–2002 as the first period, and 2003–2007 as the 
second period. We construct the outmigration (immigration) ratio for 
each county as the ratio between number of firms moving out (in) and 
total number of firms at the beginning of each period. We calculate 
net-outmigration ratio as the difference between outmigration and 
immigration ratio. We then estimate the effect of air pollution on three 
measures of firm migration using thermal inversions as the instrument 
and include county fixed effects, period fixed effects, and weather con
trols. Table A13 in Online Appendix I reports the estimates. Similar to Fu 
et al. (2021), we do not find any significant effects of air pollution on any 
measure of migration for any type of ownership. Our results suggest that 
the migration in response to air pollution that we are capturing is pre
dominantly driven by decisions at the individual or household level. 

8. Conclusions 

Our findings suggest that pollution changes are an important deter
minant of internal migration in China. A county-level independent shock 
to air pollution of 10 percent of the average concentration will reduce 
the population in that county by 2.8 percent through a combination of 
less immigration and more outmigration. A significant share (close to 
half) of that response seems to be produced by reduced immigration of 
floating immigrants; i.e. immigrants that do not change their hukou or 
official residence when they move. This suggests that individuals keep 
track of air pollution levels not only in their county of origin but also in 
potential destination counties. 

When interpreting the magnitude of our results, it is important to 
account for the independence of the shocks that we use to identify our 
effects. This is relevant because pollution changes in China in the period 
of our study were highly correlated across counties. Specifically, out of 
the average time variation in our pollution data (that is, the average 
variation left after subtracting the cross-sectional variation), only 26 
percent is uncorrelated across counties. Therefore, extrapolating our 
estimates to the total changes in air pollution that the average county 
experienced would likely overestimate the movement in population that 
air pollution was responsible for in this period. However, when applying 
our estimates to the within county variation net of province wide period- 
to-period changes, we find that reductions in population of the order of 
1.7–3.5 percent in response to air pollution are not rare: these corre
spond to the 75th and 90th percentiles of predicted changes. 

The magnitude of these flows is especially important when consid
ering their demographic composition. Our results show that responses to 
air pollution are predominantly driven by women in childbearing and 
child-rising age and that their male counterparts migrate at lower rates 
(and only when they are very young). This suggests that families are 
choosing to split between different locations in response to air pollution; 
a result that had not been documented in the literature. In addition, the 
migration response to air pollution has a steep education gradient. This 
has the potential to reshape the labor force composition across counties. 
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Acknowledgement 

All authors contributed equally and are ordered alphabetically. 
Shuai Chen thanks the Natural Science Foundation of Zhejiang Province 
(LR22G030003), the Cyrus Tang Foundation, the National Natural Sci
ence Foundation of China (72134006), the Ministry of Science and 
Technology of China (2020YFA0608600), the Ecological Civilization 
Project of Zhejiang University, the Fundamental Research Funds for the 

Central Universities, and the EfD Initiative of the University of Goth
enburg through Sida. Peng Zhang thanks the National Social Science 
Foundation of China (21ZDA065) and National Natural Science Foun
dation of China (72033005). We thank Hunt Allcott, Tamma Carleton, 
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