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A B S T R A C T

The shale technical revolution has reshaped the oil and gas industry dramatically but also controversially as it
affects existing energy policies as well. Many related policies, such as the fracking tax in the U.S. and the shale
subsidies policy in China, depend heavily on whether or not the innovation is commercially successful. This
paper develops a two-step approach to evaluate the effect of the revolution on efficiency in the global oilfield
service (OFS) market, which can be divided into five segments. In the first step, a new semiparametric model is
introduced to evaluate firm-level technical efficiencies assuming segment-specific production functions for each
of the five segments. In the second step, this study tests if companies acquiring directional drilling (DD) and/or
hydraulic fracturing (HF) techniques can maintain efficiency. The empirical results show that practicing just one
of the techniques will decrease efficiency. However, combining the two can produce significant spillover effects
and improve efficiency. Therefore, innovation and integration are both crucial for the OFS market. Some policy
implications are also discussed.

1. Introduction

The oilfield service (OFS) market, or oil and gas service industry, is
a complex process that involves specialized technology at each step of
the oil and gas supply chain. Companies in the OFS market provide the
infrastructure, equipment, intellectual property, and services needed to
explore for and extract crude oil and natural gas. Therefore, this market
is the upstream of the petroleum industry. The global OFS market has a
total market capitalization of over $4 trillion, generating total revenues
over $400 billion in 2014.2

The shale revolution, which benefited mainly from new technolo-
gies in hydraulic fracturing and directional drilling, has resulted in a
10% compound annual growth rate (CAGR) for the OFS market over the
past decade. As conventional oil and gas resources are now being ex-
hausted, oil and gas companies are currently paying more attention to
unconventional oil and gas, offshore production, and aging reservoirs to
maintain a steady supply. Therefore, the revolution is also called an
unconventional revolution.

Hydraulic Fracturing (HF) is a well stimulation technique in which
rock is fractured by a pressurized liquid. The process involves the high-
pressure injection of “fracking fluid” (primarily water containing sand

or other chemical additives) into a wellbore to create cracks in the
deep-rock formations through which natural gas, petroleum, and brine
will flow more freely. Directional Drilling (DD) is the practice of drilling
non-vertical wells, and it includes the popular horizontal drilling. This
technology can hit some targets that cannot be reached by vertical
drilling and can drain a broad area from a single drilling pad. The
combining of two technologies, HF and DD, has led to the shale re-
volution. Some rock units that were unproductive when drilled verti-
cally can become fantastic producers of oil and/or gas. The magic of
converting worthless shales into productive reservoir rocks occurs in
many locations, such as the Barnett Shale of Texas, the Fayetteville
Shale of Arkansas, the Marcellus Shale of the Appalachian Basin, the
Bakken Formation of North Dakota, and the Haynesville Shale of
Louisiana and Texas. Fig. 1 illustrates the hydraulic fracturing and di-
rectional drilling activities.

The Oilfield Market Report (OMR) by Spears divides the OFS in-
dustry into five macro segments: 1) exploration, 2) drilling, 3) com-
pletion, 4) production, and 5) capital equipment, downhole tools and
offshore services (capital equipment, hereafter). OMR reports segment-
level revenue for the 114 public firms in the field, where 68 firms are
single-division and 56 firms are multidivisional.3 These five macro
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1 http://person.zju.edu.cn/en/gbl
E-mail address: gongbinlei@zju.edu.cn.

2 Data from 2015 Oilfield Market Report (OMR) by Spears.
3 28 firms do business in two segments, 10 firms are active in three segments, seven firms have footprints in four segments, and only one firm covers all five segments.
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segments can be further divided into 32 micro-market segments, in-
cluding Hydraulic Fracturing (under “completion” segment) and Di-
rectional Drilling (under “drilling” segment). Based on OMR, the total
revenue of the entire OFS market increased by 183% from 2005 to
2015, while the HF segment and the DD segment increased by 395%
and 287% respectively during the same period, which implies that these
two techniques are leading the development of the entire market.

On the one hand, the shale revolution is generating massive rev-
enues for OFS companies and is producing sufficient energy supplies.
Many people cheer the low energy prices and the mitigation of the
energy shortage. On the other hand, the new innovations also require
huge amounts of investment, such as labor and capital inputs as well as
Research and Development (R & D) spending, which is feared for the
related financial risk, sustainability, and low input-output ratio.4 It is
difficult to estimate the profitability of the new techniques in practice.
Public firms report total inputs and outputs, and possibly segment/di-
vision-level outputs, but not segment/division-level inputs. Therefore,
it is hard to get cost information for a specific activity or segment to
calculate the actual breakeven price for unconventional oil and gas.5 As
a result, whether the innovation is commercially successful is unknown.

But many energy policies depend on whether hydraulic fracturing
and directional drilling techniques are earning or losing. For example,
what should the tax rate of the fracking tax in the U.S. be? What sub-
sidies should the Chinese government offer to encourage shale resource
exploration and extraction? How should the renewable energy policy be
adjusted to compete with shale oil and gas?

This paper evaluates whether the innovation has a positive or ne-
gative effect on firm-level efficiency using a two-step approach. If firms
can maintain or even increase efficiency with hydraulic fracturing and
directional drilling programs, it implies that these businesses are at
least as competitive and profitable as traditional oil and gas businesses,
which will reshape geopolitics and the global energy market.

Managi et al. (2004) and Managi et al. (2006) study the productivity

and efficiency of the offshore Gulf of Mexico oil and gas production,
using data envelopment analysis (DEA) and stochastic frontier analysis
(SFA), respectively. Thompson et al. (1996) analyze the efficiency of 14
major companies in the US oilfield market, using a non-parametric DEA
for the period 1980–1991. Non-academic reports on this market are
generated by advisory service firms such as Deloitte6 and Ernst &
Young,7 which predict that the companies will be more efficient in the
future. But all the academic and non-academic studies fail to consider
the multidivisional structure of the companies and the pure effect of
new shale technologies. The oil and gas industry has been better studied
(e.g., Wolf, 2009; Eller et al., 2011, and Hartley and Medlock III, 2013)
using efficiency analysis. However, their focus is the difference between
National Oil Companies and International Oil Companies (i.e., the effect
of ownership), rather than the effect of the new shale technologies.

The OFS market is complex and can be divided into multiple seg-
ments, each using different technologies and hence following different
production functions. In the first step, a semi-varying coefficient sto-
chastic frontier model is introduced to estimate the firm-level efficiency
with this multi-segment concern, which standard productivity and ef-
ficiency analysis overlooked or chose to ignore. Then, this paper ex-
plores whether hydraulic fracturing and directional drilling have a
significant effect on a firm’s overall technical efficiency.

This study makes three central contributions. Firstly, the semi-
parametric production function considers the multi-segment char-
acteristics of a market with multidivisional firms. Secondly, this study
focuses on OFS companies, which experience much more volatility than
oil and gas companies but are seldom studied.8 Thirdly, this paper es-
timates the impact of the shale revolution on efficiency, which provides
essential messages to companies for their operational decisions and
strategies as well as to governments for their policies and management.

The empirical results show that: 1) the production function is in-
deed segment-variant, which supports the validation of the multi-seg-
ment assumption considered; 2) the output elasticity of labor is con-
sistent, while the output elasticity of capital varies greatly across
segments; 3) the average firm-level efficiency for the OFS market is
about .4, and the distribution is positive skewed; 4) having a footprint
in just a hydraulic fracturing or just a directional drilling business can
decrease efficiency, but combining the two generates positive spillover
effects; 5) all the findings above are robust when either a Cobb-Douglas
or Transcendental Logarithmic production form is adopted.

The remainder of the paper is structured as follows. Section 2 in-
troduces the model. Section 3 provides data descriptions. Empirical
results are presented and analyzed in Section 4. Section 5 gives con-
clusion and policy implications.

2. Model

This model includes two steps. Firstly, a stochastic frontier model is
used to estimate firm-level aggregated production function as well as
efficiency. Secondly, the derived efficiency is regressed on dummy
variables of hydraulic fracturing and directional drilling as well as other
variables.

2.1. Step One: production function and technical efficiency

This subsection develops a partial linear semiparametric varying

Fig. 1. Diagram of hydraulic fracturing and directional drilling.

4 The shale revolution is also criticized for climate reasons. The oil and gas from shale
is “worse than coal” for the climate since there is greater leakage of methane to the
atmosphere in unconventional wells. Moreover, while a high supply of oil and gas de-
creases energy prices, it discourages the development of renewable energy. However, this
paper only focuses on analyzing the economic impact of the revolution from companies'
perspectives.

5 Although some firms report a breakeven price, many of them are wide ranges rather
than fixed numbers. The veracity of the reported prices is also suspect since many firms
adjust their price ranges frequently and continue to produce when the market price drops
far below their reported breakeven prices. Sometimes even the companies themselves find
it difficult to calculate the profitability of a certain program/segment because of the joint
inputs and spillover effects. Remember, oilfield is a complex process that involves many
steps in the energy supply chain.

6 https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/energy-
resources/deloitte-uk-energy-and-resources-outlook-for-oilfield-services.pdf.

7 http://www.ey.com/Publication/vwLUAssets/EY-review-of-the-UK-oilfield-services-
industry-January-2017/$FILE/EY-Review-of-the-UK-oilfield-services-industry-January-
2017.pdf.

8 The productivity and efficiency of oilfield firms is studied much less than oil and gas
companies for two reasons: the complex multi-segment characteristics and the lack of
segment-level data. This paper uses a very unique dataset to capture the multi-segment
characteristics. The empirical result confirms the necessity of doing so.

B. Gong Energy Policy 112 (2018) 162–172

163

https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/energy-resources/deloitte-uk-energy-and-resources-outlook-for-oilfield-services.pdf
https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/energy-resources/deloitte-uk-energy-and-resources-outlook-for-oilfield-services.pdf
http://www.ey.com/Publication/vwLUAssets/EY-review-of-the-UK-oilfield-services-industry-January-2017/FILE/EY-Review-of-the-UK-oilfield-services-industry-January-2017.pdf
http://www.ey.com/Publication/vwLUAssets/EY-review-of-the-UK-oilfield-services-industry-January-2017/FILE/EY-Review-of-the-UK-oilfield-services-industry-January-2017.pdf
http://www.ey.com/Publication/vwLUAssets/EY-review-of-the-UK-oilfield-services-industry-January-2017/FILE/EY-Review-of-the-UK-oilfield-services-industry-January-2017.pdf


coefficient stochastic frontier model (“Varying Frontier”) to estimate
the aggregated production function for multidivisional firms and fur-
ther predicts firm-level efficiency with multi-segment concern.

2.1.1. Stochastic frontier analysis
Stochastic frontier production function model equals the determi-

nistic frontier production function plus a symmetric random error
variable, which is independently and simultaneously proposed by
Aigner et al. (1977) and Meeusen and Van den Broeck (1977) in the
form

= ′ + − = …Y x β ν u i Nln , 1, , ,i i i i

where Yi is the output of firm i, xi is the vector of inputs typically in
logarithms, νi accounts for measurement errors and other sources of
non-systematic statistic noise, and ui is a non-negative random variable
representing technical inefficiency (the distance to the frontier).

The stochastic frontier literature in the early 1980s mainly consists
of analyses for cross-sectional data. νi is usually assumed to follow a
normal distribution that is independent of each ui while ui is assumed to
follow a variety of distributions including half-normal distribution
(Aigner et al., 1977), normal truncated distribution (Stevenson, 1980),
and gamma distribution (Greene, 1990). Given panel data, Schmidt and
Sickles (1984) proposed panel stochastic frontier model in the form

= + ′ + − = + ′ + = … = …Y α x β ν u α x β ν i N t Tln , 1, , , 1, , .it it it i i it it

(1)

Then fixed effects or random effects methods can be used to esti-
mate αi under different conditions. Other estimators can be found in
Cornwell et al. (1990), Kumbhakar (1990), Battese and Coelli (1992),
Lee and Schmidt (1993), Kneip et al. (2003), and Sickles (2005).

2.1.2. Weight index and multi-segment concern
One industry may have multiple segments. For example, the global

OFS market has five segments including exploration and production.
Since the technologies utilized in exploration and production are dif-
ferent, the production function is segment-specific. For a multi-
divisional firm who has footprints in multiple segments, different pro-
duction technologies are used to convert inputs to outputs. Therefore,
the aggregated production function for this firm is not equal to any of
the segment-specific production functions, but a combination of them.
This paper attempts to estimate the aggregated production function for
multidivisional firms and then derives firm-level efficiency.

Since multidivisional firms use different production technologies,
some weight index is needed to estimate the aggregated production
function with multi-segment concern. The revenue share by segment/
division for firm i at time t , θit, is an eligible weight to capture the
heterogeneity in technologies since it indexes the proportion of business
using each of the segment-specific techniques. In other words, θit
measures the frequency of using every segment-specific technology in a
multidivisional firm. Imagine a “M inputs – N products/segments – T
periods” industry, = …θ θ θ θ( , , , )it i t i t iMt1 2 where =θijt

∀ = …
∑ =

; j N1,2, ,R

R
ijt

J
N

ijt1
and Rijt is the revenue for firm i in segment/di-

vision j at time t.
As a standard single frontier model, Eq. (1) ignores the hetero-

geneity in production technologies across segments. The next subsec-
tion adds θit into the stochastic frontier model to estimate the ag-
gregated production function when firms may have different
technologies in their portfolio and use them at different frequencies.

2.1.3. General model
Eq. (1) presents a linear production model and can be generalized to

= ∙ ∙ ∙ −Y f X β τZ ν u( ; ) exp ( ) exp ( ) exp ( ),it it it i0 (2)

where Yit is the aggregated output of individual i at time t;
= …X X X X( , , )it it it it

M1 2 vectors the M types of inputs; ∙f X β τZ( ; ) exp ( )it 0 is

the production frontier over time, where f X β( ; )it 0 is the time-invariant
part of the production function, = …β β β β( , , )M0 01 02 0 is a vector of
technical parameters to be estimated. Z vectors a group of year dummy
variables, controls the production frontier change over time and τ
vectors the coefficients of the year dummy variables; νexp ( )it is the
stochastic component that describes random shocks affecting the pro-
duction process, where νit is assumed to be normally distributed with a
mean of zero and a standard deviation of σν, and = −TE uexp ( )i i de-
notes the technical efficiency defined as the ratio of observed output to
maximum feasible output. =TE 1i or =u 0i shows that the i-th in-
dividual allocates at the production frontier and obtains the maximum
feasible output at time t , while <TE 1i or >u 0i provides a measure of
the shortfall of the observed output from the maximum feasible output.
This study uses the popular “Error Components Frontier” (Battese and
Coelli, 1992) with time-invariant efficiencies to estimate ui and TEi.

Again, imagine a “ M inputs – N products/segments – T periods”
industry. The revenue share by segment θit is introduced to capture the
heterogeneity in total revenue and production technologies. This paper
uses θit as a weight index and adds it into the aggregated production
function:

= ∙ ∙ ∙ −Y f X β θ τZ ν u( ; , ) exp ( ) exp ( ) exp ( )it it it it i0 (3)

The effect of the business portfolio θit can be either dependent or
independent with the rest of the production function. If it is in-
dependent (i.e., = ∙f X β θ f X β m θ( ; , ) ( ; ) ( )it it it it0 0 ), then a transfer to the
traditional multiproduct stochastic frontier analysis is possible, where
one product is a function of all inputs and all other products. Adams
et al. (1999) and Liu (2014) use such a canonical regression to check
the efficiency of the banking industry with multiple outputs and inputs,
where these two papers model f X β( ; )it 0 nonparametrically and para-
metrically, respectively. This study assumes a Cobb-Douglas form and
set a production function where θit is independent with f X β( ; )it 0

∑= + + + −
=

Y r θ β X τZ ν uln ( ) (ln ) ,it it
k

M

k it
k

it i
1 (4)

where r θ( )it is a nonparametric functions of θit. Although the intercept
r θ( )it is a nonparametric functions of θit rather than a constant α as in
Eq. (1), the core of production function f X β( ; )it 0 is still segment-in-
variant, which is a strong assumption. Therefore, the frontier estimated
by Eq. (4) is called “Single Frontier”.

This paper focuses on the other situation, where θit can directly
affect the production function through their effects on the technical
parameters. This model is inspired by the smooth/varying coefficient
model (see Hastie and Tibshirani, 1993) and therefore called the
varying production frontier, where the coefficients are nonparametric
functions of some “threshold” variables (θit in this case).

= ′ = ∙ ∙ ∙ −Y f X β r θ τZ ν u( ; ( )) exp ( ) exp ( ) exp ( ).it it it it i0 (5)

Eq. (5) allows the change in aggregated production function when
revenue share θ varies. For example, if a multidivisional firm has major
business in segment A and minor business in segment B, then the ag-
gregated production function of this firm is likely to be closer to the
production function in segment A, as this company uses production
technology from this segment more frequently. Since using multiple
technologies jointly can lead to nonlinear spillover effects caused by
shared R &D investment, joint inputs, and so on, we cannot simply take
the weighted average of the segment-specific production functions.
Hence, a nonparametric function ∙r ( ) is used to control the nonlinear
combination of technologies.

2.1.4. Semi-varying coefficient model
Productivity and efficiency analysis is dominated by two ap-

proaches: the parametric stochastic frontier analysis (SFA) and the
nonparametric deterministic data envelopment analysis (DEA). Each
method has its own strengths and drawbacks: stochastic frontier
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analysis is suitable for noisy data, but requires the priori assumption of
an explicit functional form; data envelopment analysis does not require
specified functional form, but does not allow for statistical noise since
no stochastic component is included. In recent years, many new semi-
parametric and nonparametric stochastic frontier techniques have been
applied to narrow the gap between SFA and DEA. Such development
results in new methods to better model the aggregated production
function for multidivisional firms who use multiple production tech-
nologies.

Fan et al. (1996) propose a semiparametric method that allows for
statistical noise and does not need to specify the functional form of the
production frontier. Their approach, known as semiparametric frontier
analysis, has the form

= + = + + −y f x f x μ v u( ) ϵ ( ) (6)

where f x( ) is a semi- or nonparametric production function. Similar to
parametric stochastic frontier analysis, u is a non-negative technical
inefficiency term and v is a statistical noise term. μ is a constant that
guarantees the expected value of ϵ equals zero. Therefore, = + −μ v uϵ
is the disturbance term with a zero mean.

In practice, the semiparametric model is solved in two steps: in the
first step, the semi- or nonparametric regression = +y f x( ) ϵ is run to
retrieve the residuals ϵ̂; in the second step, the residual is decomposed
as = + −μ v uϵ̂ using normal stochastic frontier model where ϵ̂ is the
dependent variable and a constant is the only independent variable.
Henningsen and Kumbhakar (2009) adopt this approach in their ap-
plied study on Polish farms, where they use logarithmic output and
input quantities for three reasons: 1) the elasticities are easier to in-
terpret; 2) the observations are more equally distributed when using
constant bandwidths; and 3) the usual specification of the production
function is easier to adopt.

As Henningsen and Kumbhakar (2009) point out, the nonavail-
ability of software used to prevent applied studies to widely use this
approach. This restriction has disappeared in recent years. Take R as an
example, the “np” package (Hayfield and Racine, 2008) , the “gam”
package (Hastie and Tibshirani, 1990), or the “gamlss” package
(Stasinopoulos and Rigby, 2007) can be used in the first step and the
“frontier” package (Coelli et al., 2012) can be used in the second step.

This section uses the varying coefficient model (VCM) for the pro-
duction function f x( ) in Eq. (6). Hastie and Tibshirani (1993) first in-
troduce VCM in the form

= +…+ +X r θ X r θY ( ) ( ) ϵp p p1 1 1

where …θ θ, , p1 change the coefficients of the …X X, , p1 through un-
specified functions ∙ … ∙r r( ), , ( )p1 . The coefficients are nonparametric
functions that are not constant, hence the name “varying/smooth
coefficient model”. VCM is initially applied to model time-variant
coefficient functions in censored data in survival analysis.

In production analysis, environmental factors can only affect the
frontier neutrally if treated as independent variables (X ). Some varying
coefficient stochastic frontier analysis treats the environment factors as
θi and allows their effect on the frontier to be non-neutrally. R & D
Spending is such an environmental factor that is believed to affect the
frontier directly. Other examples of such “threshold” variables include
tax rate, firm size, firm age, etc. (Kumbhakar and Sun, 2013).

Zhang et al. (2012) develop a varying coefficient production func-
tion to study China’s high technology industry, where panel data
spanning the period 2000–2007 is used. Sun and Kumbhakar (2013)
estimate stochastic production frontier in a Norwegian forest using a
cross-section of 3249 active forest owners. Both of these studies use
R & D-varying coefficient production functions. However, they use an
average production function, not a stochastic frontier model.

This section generates a partial linear semi-varying coefficient sto-
chastic frontier analysis to model the OMR panel data for the OFS
market where the revenue distribution by segment θ can directly affect
the technical parameters and the frontier has a Cobb-Douglas (C-D)

form.

= + + + + −Y α r θ L r θ K τZ ν uln ( )ln ( )lnit it it it it it i1 2 (7)

where Yit , Lit, and Kit are the output, number of employees, and capital
employed for firm i at time t , respectively.

There are two nonparametric approaches to estimate the ∙r ( )1 and
∙r ( )2 in Eq. (7): the kernel-based method (Fan and Huang, 2005; Fan

and Li, 2004; Hu, 2014; Su and Ullah, 2006; Sun et al., 2009) and the
spline-based method (Ahmad et al., 2005; Hastie and Tibshirani, 1993).
Fan and Zhang (2008) think that kernel smoothing methods are more
reasonable, as the varying coefficient model is a local linear model,
while Kim (2013) argues that spline methods are more attractive for
their flexibility to involve multiple smoothing parameters. However,
both methods have some disadvantages: the former may suffer from the
“curse of dimensionality” and the latter may encounter computational
challenges, since the number of spline basis functions can be large.

Since there are five variables in θit that will cause a “curse of di-
mensionality”, this study selects the penalized B-spline approach to
estimate the production function. It is assumed that the inefficiency
term is time-invariant (ui) so that the Least Square Dummy Variable
(LSDV) can be used to derive a fixed effect estimator. Appendix A
provides reasons to adopt time-invariant firm-level efficiency in this
study. Lu et al. (2008) present results on the strong consistency and
asymptotic normality for penalized B-spline estimators of such a
varying coefficient model.

This paper uses the two-step approach in Henningsen and
Kumbhakar (2009) to estimate Eq. (7): 1) a penalized B-spline method
is used to derive consistent coefficients and predict the residuals in the
first step; 2) then, a normal stochastic frontier analysis is used where ϵ̂ is
the dependent variable and a constant is the only independent variable.
This paper also develops a varying coefficient stochastic frontier ana-
lysis where the production function has a Transcendental Logarithmic
(T-L) form to check the robustness of the varying coefficient model.

2.1.5. Endogeneity problem
Endogeneity is a big issue in production function since input choices

are determined by some information that are available by the firms
(Ackerberg et al., 2015), which is unavailable by outsiders such as
economists. Marschak and Andrews (1944) point out this simultaneity
problem is more significant for inputs that adjust rapidly. OFS market is
a typical example where the decisions of the companies depend heavily
and frequently on exploration and production (E & P) spending from the
oil and gas firms and the business cycles. The massive volatility forces
companies to divest capital and cut headcount aggressively when the oil
price goes down. The potential endogeneity problem in the production
function can lead to biased OLS estimates.

One of the solutions to an endogeneity problem is using a set of two-
step techniques, advocated by Olley and Pakes (1996). This method
uses observed investment to “control” for unobserved productivity
shocks (efficiency). Levinsohn and Petrin (2003) extend the idea by
using intermediate inputs instead of investment to solve the simulta-
neity issue as investment is an invalid proxy in many datasets where
significant amounts of observations have zero or missing investment.
However, as Ackerberg et al. (2015) note, both of the models suffer
from the collinearity problems so that the coefficients of the exogenous
inputs cannot be identified.

Since the intermediate data is not available in the dataset, this paper
uses the most widely used instrumental variables (IV) estimation to
solve the endogeneity problem. Recently, Amsler et al. (2015) in-
troduce how to use instrumental variables method in stochastic frontier
analysis when the production adopts Cobb-Douglas (C-D) and Trans-
cendental Logarithmic (T-L) form, respectively. On the one hand, they
applied a Corrected Two-Stage Least Square (C2SLS) to solve the en-
dogeneity problem in C-D stochastic frontier model.9 On the other
hand, they suggest using the control function method in T-L stochastic
frontier model. Moreover, they introduce a method to reduce the
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number of instrument variables needed.10

Following Amsler et al. (2015), this study uses the C2SLS method for
the linear C-D production function and the control function method for
the nonlinear T-L production. The control function method can also test
the exogeneity of the inputs using t-tests for the significance of the
reduced form residuals (see detail in Amsler et al., 2015). The potential
instrument variables include input prices and lagged values of input use
(Levinsohn and Petrin, 2003). However, lagged values of inputs are
valid instruments only if the lag time is long enough to break the de-
pendence between the input choices and the serially correlated shock.
Blundell and Bond (2000) and Guan et al. (2009) both emphasize the
input levels lagged at least two periods can be valid instruments. This
study uses lag two and lag three input quantities as instruments re-
spectively and get robust results. Therefore, input price and lag two
input quantities are selected to be the instruments so that more ob-
servations can be pooled into the regression.

2.2. Impact of the shale revolution

The shale revolution has mainly occurred in hydraulic fracturing
and directional drilling. This paper explores the effect of hydraulic
fracturing and directional drilling activities on firm-level efficiency
using Eq. (8).

= + ∙ + ∙ + ∙ ∙ + ∙ + ∙TE β β HF β DD β HF DD β R β Mi i i i i i i0 1 2 3 4 5 (8)

where TEi is the technical efficiency for firm i, HFi is the dummy
variable of companies who has hydraulic fracturing business, DDi is the
dummy variable of companies who has directional drilling business, Ri
refers the revenue for firm i in logarithms to control the size of the
company, and Mi is the dummy variable of multidivisional firms who
have footprints in multiple segments. Eq. (8) also includes the inter-
action between HFi and DDi to estimate the potential spillover effects of
the two technologies.

3. Data

This paper applies Eq. (7) in the OFS market using deflated revenue
as the output, number of employees11 as the first input, and capital as
the second input. Division-level revenue data from 1997 to 2014 for
each of the 114 public firms are collected from the three waves of the
OMR (2000, 2011, and 2015) dataset. Appendix B introduces this re-
port, the method employed to combine the three waves of data, and the
detailed segmentation of the OFS market.

Data on the annual overall revenue, the number of employees, and
total capital for the 114 public firms during same period is collected
from Thomson ONE, Bloomberg, and FactSet. The total capital is the
accounting capital, which is the sum of equity and long-term debt. This

study adjusts the capital data following the unified perpetual inventory
method (PIM) in Berlemann and Wesselhöft (2014), which is widely
used in productivity analysis. Appendix C explains this data-generating
process. Since the labor and capital data are the year-end values, the
values at periods t and +t 1 are averaged to get the average value at
period +t 1.

The overall revenue of a firm is not always equal to the total rev-
enue in the OFS market as reported by the OMR. In some cases, the
former may be larger because the company has some business outside
the OFS market. On the other hand, the former could be smaller, as the
OMR adds the acquired firm’s revenue to the mother firm’s revenue
even in the years before acquisition. The input proportionality as-
sumption suggested by Foster et al. (2008) is used to adjust the labor
and capital used in the OFS market. Finally, the Bureau of Labor Sta-
tistics publishes the Producer Price Index (PPI) by North American In-
dustry Classification System (NAICS) division. The output price indices
deflate the revenue, which can be regarded as output.

Since input prices are selected as instruments to solve endogeneity
problem, this paper also collects labor price and capital price: 1) the
labor price is the total labor cost divided by the number of employees.
Many international firms have compensation cost information, but
North American firms have no such information published. This paper
sets the labor price of each North American firm to its corresponding
NAICS division average. The later information is available in the Labor
Productivity and Cost (LPC) Database from the Bureau of Labor
Statistics; 2) the capital price is the sum of the depreciation rate and
interest rate. i) Thomson ONE, Bloomberg, and FactSet offer deprecia-
tion and capital data, which can derive the depreciation rate. ii) the
interest rate can be estimated by a capital asset pricing model (CAPM).
The needed firm-level beta,12 the risk-free rate, and the expected
market return are all available in Thomson ONE, Bloomberg, and
FactSet.

Table 1 summarizes firm-level input and output in the OFS market.
Average revenues increased almost three-fold, from $.97 billion in 1997
to $2.78 billion in 2014. In the labor market, the average number of
employees was around 5750 from 1997 to 2009 and then jumped to
7500 in 2014, which shows a large amount of new employment after
the 2007–2009 financial crisis. The average wage almost doubled in the
period of 1997–2014. In the capital market, the price of capital is very
stable, while the amount of capital in 2014 was more than four times
the level it was in 1997. To sum up, both revenues and costs increased
dramatically from 1997, which was very likely driven by the shale re-
volution. Based on the dataset, this paper can build a “2 inputs – 5
products/segments – 16 periods” model13 for the OFS market.

4. Estimation results

This empirical study applies the described models to public firms in
the global OFS market. This study estimates production frontiers and
firm-level efficiencies in the first step and then predicts the impact of
the shale revolution on efficiency in the second step.

4.1. Production frontiers

The “Varying Frontier” model in Eq. (7) cannot derive constant
coefficients of the production function that are directly comparable
with those in the “Single Frontier” model in Eq. (4). Therefore, this
study visualizes the varying effects of labor and capital on output in the
“Varying Frontier” model. Fig. 2 illustrates the range of such varying

9 For C2SLS, the first step is to estimate the model by 2SLS and derive the residuals
using the instruments. In the second step, these 2SLS residuals are decomposed using the
maximum likelihood method, just as in classic stochastic frontier analysis. A somewhat
similar two-step procedure is built by Guan et al. (2009).

10 For example, suppose two inputs, labor and capital, are both endogenous. At least
five instruments are needed since all of the two inputs, their square terms, and their
interaction are endogenous in the T-L production function. However, under some addi-
tional assumptions, consistent estimators can be obtained using only two control func-
tions, not five. This point has been made by some economists, including Blundell and
Powell (2004), Terza et al. (2008), and Wooldridge (2010). See detailed discussion in
Amsler et al. (2015).

11 There are contractors (non-fulltime employees) working in the OFS field that are not
included in the number of employees. We cannot find the number of these contractors in
each firm, let alone their working hours to transfer them into the number of Full Time
Equivalent (FTE) employees. Actually, this is a problem happens in many industries,
where the companies’ financial reports only provide the number of employees rather than
the number of FTE employees. The existing studies usually use number of employees to be
the proxy of total labor force. In order to reduce the potential bias, this paper uses Cobb-
Douglas production function so that the result is not skewed as long as the ratio of em-
ployees and non-FTE employees has no large variation across firms.

12 In finance, the beta of an investment or a company is a measure of the risk arising
from exposure to general market movements as opposed to idiosyncratic factors. The
market portfolio of all investable assets has a beta of unity.

13 In regression, the data in 1997 and 1998 are only used as instrument variables to
control heterogeneity. Therefore, time t in Eq. (7) refers to 1999–2014 in the empirical
study.
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effects for firms with different business portfolios, which reveals the
variation of the aggregated production function under the “Varying
Frontier” method. It is clear that the capital effect varies greatly when
technologies in different segments are utilized at different frequencies.
However, the labor productivities in different segments are very robust.
The varying effects support the validation of the segment-specific pro-
duction assumption.

Fig. 3 calculates the average effects of the varying coefficients in the
“Varying Frontier” model and compares them with those in the “Single
Frontier” model. The average effects of labor in the “Varying Frontier”

model are a little less concave than the fixed labor elasticity in the
“Single Frontier” model. A similar finding applies to the effect of ca-
pital.

Fig. 4 further compares the two models by showing the “Output-
Labor-Capital” relations graphically using 3D images and contour
graphs. Overall, the comparisons again show that the average effects of
the varying coefficients in the “Varying Frontier” model are a little less
concave than the constant effects in the “Single Frontier”model, but the
difference is not very significant.

4.2. Technical efficiency

Table 2 summarizes the distribution of the efficiency scores in the
OFS market. Since the difference is witnessed between the “Single
Frontier” model and the “Varying Frontier” model, this paper adds the
estimation when the production function takes Transcendental Loga-
rithmic (T-L) form for further comparisons. In practice, this paper drops
the top and bottom 2.5% of the estimations to eliminate outliers.

The average efficiency level of the industry is around .3 in the
“Single Frontier” model and around .4 in the “Varying Frontier” model.

Table 1
Oilfield market summary statistics.

Variables Unit 1997 2001 2005 2009 2014

Average Revenue $ ∙1 109 .97 1.02 1.33 1.7 2.78
Average Number of Employees ∙1 103 5.78 5.63 5.64 5.86 7.5
Average Labor Price $1000 50.7 54.7 69.6 81.7 95.9
Average Capital $ ∙1 109 .61 .68 1.17 1.39 2.51
Average Capital Price % 18.9 21.3 20.2 20.7 21.2

Fig. 2. The range of the production frontier in the “Varying Frontier” method.

Fig. 3. Effect of capital and labor on output in various methods.
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The “Varying Frontier” model provides more robust estimation than the
“Single Frontier” model when assuming different functional forms of
the production frontier.

Table 3 presents the distribution of firms by technical efficiency
scores, which is classified into four efficiency class intervals. For each of

the efficiency class intervals and the overall average estimated tech-
nical efficiency scores, the lower and upper bounds of 95% Confidence
Interval (CI) are obtained by using a bootstrap technique, called Efron’s
nonparametric bias-corrected and accelerated (BCa) method, with
10,000 replications (Briggs et al., 1999). It also supports that the effi-
ciency estimated by the “Varying Frontier”model is higher than the one
estimated by the “Single Frontier” model.

4.3. Impact of the shale revolution

The most important question this paper seeks to answer is whether
or not investing in hydraulic fracturing and directional drilling is a good
strategy. Especially after the oil price crash in 2014, should we still
consider these expensive innovations? In other words, should the shale
revolution be cheered or feared, especially in the downturn?

This study uses data in 2013 to estimate Eq. (8) since 113 companies
are active this year, which is the largest cross-sectional data in the

Fig. 4. Estimated production frontiers in various methods.

Table 2
Technical efficiency statistics.

Single frontier Varying frontier

C-D model T-L model C-D model T-L model

Mean .27 .32 .43 .42
Minimum .06 .07 .16 .16
25% quantile .14 .18 .29 .27
50% quantile .21 .26 .40 .37
75% quantile .34 .40 .52 .49
Maximum 1.00 1.00 1.00 1.00

B. Gong Energy Policy 112 (2018) 162–172

168



panel.14 There are nine companies that only have hydraulic fracturing
techniques, four companies that only have directional drilling techni-
ques, and seven companies that utilize both hydraulic fracturing and
directional drilling techniques. Table 4 reports the estimated results,
which is the second step regression after estimating the efficiency.

Two things are consistent in all the four columns: 1) larger firms
have advantages over smaller firms in terms of efficiency since the
coefficient of Ri is always positive and significant15; and 2) other things
being equal, multidivisional firms on average have neither an ad-
vantage nor a disadvantage in efficiency over single-division firms in
the OFS market since the coefficient of Mi is statistically and econom-
ically insignificant.

The impact of the shale revolution on the “Single Frontier” esti-
mated efficiency is not significant. With the multi-segment concern in
the “Varying Frontier” model, however, this impact is both statistically
and economically significant. According to the results in the C-D model
(column 3 in Table 4), investing in only hydraulic fracturing or only
directional drilling will lower a firm’s overall efficiency when other
things, including firm size, are equal. In other words, if a company has
limited resources and cannot expand quickly, it is not a good idea to
divest the current business to support innovation in one of hydraulic
fracturing and directional drilling. Entering into hydraulic fracturing
alone will, on average, have a 12.3 percentage points decrease in effi-
ciency, while entering into directional drilling alone will, on average,
have an 8.7 percentage points decrease in efficiency. Since the tradi-
tional segments of the OFS are saturated, it is hard to increase market
share dramatically in those segments. If a company has sufficient
funding in hydraulic fracturing, it has to generate 95% more revenue in
order to keep the current efficiency. In other words, a company has to
double its revenue in a year so that the benefit from economies of scale
can fully compensate the cost of innovating hydraulic fracturing. If
investing in directional drilling, this company would also need to in-
crease by two-thirds in revenue to achieve breakeven. This result makes
sense because these technologies are innovated to extract oil and gas
from the more complex and less productive reservoirs, which involves
massive sunk costs and operating costs, and hence it is very difficult to
break even.

Does that mean that the shale revolution should be feared and
companies need to get rid of their investments? The coefficient of the
interaction between hydraulic fracturing and directional drilling is
significantly positive, which indicates the existence of spillovers of the
combination. For a company that is already engaging in hydraulic
fracturing, adding directional drilling to the portfolio can increase ef-
ficiency by 9.5 percentage points. For a company that is already

engaging in directional drilling, adding hydraulic fracturing to the
portfolio can increase efficiency by 5.9 percentage points. Although
adding both technologies will still decrease efficiency by 2.8 percentage
points for companies that had not previously been engaging in either
practice, the breakeven revenue growth is 22%. This growth rate re-
quirement means that each of the two businesses only needs to con-
tribute 11% of the company’s sales, which is achievable and much
lower than adding hydraulic fracturing alone (95%) and directional
drilling alone (67%). This result supports the theory that combining
hydraulic fracturing and directional drilling is crucial to the success of
the shale revolution. The positive spillover effects of the combination
can compensate for the massive investment.

As the first robustness check, this paper repeat the second-step re-
gression using the T-L model derived efficiency as the dependent
variable in the fourth column in Table 4, which derives very close
numbers, as analyzed above using the C-D model derived efficiency
(column 3). As the second robustness check of our results, Table 5 lists
the estimated results of the C-D Varying Frontier Model using 2010,
2011, 2012, and 2013, respectively. The results are pretty consistent
over time.

4.4. More discussions on single and varying frontier models

In the single frontier model, the unique frontier is the highest
frontier among all the frontiers in the varying frontier model.
Therefore, the efficiency level derived in the single frontier setting must
be lower or equal to the one derived in the varying frontier setting,
which is verified in Tables 2 and 3. For example, the median efficiency
is .21 for single frontier model and .4 for varying frontier model when
C-D production function is adopted.

On the one hand, single frontier assumption is invalid logically, as
different segments have different production process and use different
techniques, which leads to different frontiers. Such invalid assumption

Table 3
Technical Efficiency Class Interval.

Eff. range Single frontier Varying frontier

C-D model T-L model C-D model T-L model

firm # Mean (95% CI) firm # Mean (95% CI) firm # Mean (95% CI) firm # Mean (95% CI)

<= .3 73 .17 (.15–.18) 65 .19 (.17–.21) 30 .23 (.22–24) 31 .22 (.21–.23)
.3–.5 23 .38 (.36–.41) 24 .38 (.36–.41) 47 .39 (.38–.41) 52 .39 (.38–.41)
.5–.75 8 .62 (.58–.67) 14 .61 (.58–.65) 20 .58 (.56–.61) 14 .60 (.57–.62)
> .75 3 .89 (.76–.97) 4 .93 (.88–.98) 10 .91 (.86–.95) 10 .88 (.84–.93)
Total 107 .27 (.23–.31) 107 .32 (.28–.36) 107 .43 (.40–.47) 107 .42 (.38–.46)

Table 4
Efficiency regression result in 2013.

TÊi Single frontier Varying frontier

C-D model T-L model C-D model T-L model

HFi −.051 −.040 −.123** −.136**
(.076) (.080) (.057) (.056)

DDi −.087 −.092 −.087** −.084**
(.057) (.063) (.041) (.040)

∙HF DDi i .166 .123 .182** .194**
(.110) (.116) (.083) (.082)

Ri .078*** .092*** .130*** .126***
(.011) (.012) (.009) (.009)

Mi −.007 −.002 .0002 .006
(.033) (.035) (.025) (.025)

Intercept −.246*** −.291*** −.427*** −.421***
(.072) (.075) (.059) (.058)

R2 .42 .46 .73 .72

Note: Significant at: *10, * *5 and * * * 1%; Standard error in parentheses.

14 The oil price dropped at 2014, which had significant impact on firms’ entry and exit
decisions. The oilfield market peaked around 2013 as the stock prices of many oilfield
companies hit all-time high, so does the number of firms in the field due to the profit-
ability of the market.

15 This result is consistent with the opinion of Schlumberger's CEO Paal Kibsgaard,
who said in the 4Q2104 Earnings Call that scale is essential to drive performance in the
oilfield market. The industry-leading size and integration capabilities are key competitive
advantages.
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of single frontier can lead to biased estimation of efficiency and biased
impacts of new techniques sequentially, which reflects on the in-
accurate magnitude of the coefficients in the first two columns of
Table 4.

On the other hand, the firm-level efficiencies are lack of variations
in the single frontier setting, which lead to lower R square and more
insignificant coefficients when served as dependent variable. If we look
at the coefficients of the new techniques and their interaction term in
the first two columns of Table 4, their signs also imply negative effect of
either techniques alone and positive spillover effects, as are predicted in
the varying frontier model. But due to the lack of variation in efficiency,
all the three coefficients are insignificant. Therefore, we cannot provide
confident predictions as the one given in varying frontier setting.

To sum, the invalid single frontier assumption can lead to inaccurate
magnitude and significance of the coefficients in the second-step re-
gression.

5. Conclusion and policy implications

This paper develops a two-step approach to estimate the impact of
the shale revolution on firm-level efficiency and investment strategy
regarding hydraulic fracturing and directional drilling. Stochastic
frontier analysis is applied to derive firm-level efficiency in the first
step. The second step regresses the efficiency on indicators of hydraulic
fracturing and directional drilling as well as other variables.

The empirical results show that: 1) it is necessary to take multi-
segment assumptions into consideration by introducing the revenue
share by segment θ; 2) labor elasticity is stable while capital elasticity
varies greatly across segments as per the varying coefficient model; 3)
investing in only one of the two technologies in the shale revolution is

likely to lower the overall efficiency of the company; 4) the combining
of hydraulic fracturing and directional drilling produces positive spil-
lover effects, which can compensate for the massive cost and maintain
efficiency; 5) more cooperation, alliances, mergers, and acquisitions
among experts of the two techniques should be encouraged.

Considering the less endowed reservoirs that the new technologies
are working on, the shale revolution has so far been an economic suc-
cess. OFS companies have the incentive to continue investing, even if
there is a fracturing tax. Setting aside the environmental concern,16

government could encourage the shale revolution since it increases oil
and gas recoverable reserves, mitigates the energy shortage, and de-
creases energy prices. More cooperation, alliances, mergers, and ac-
quisitions among hydraulic fracturing companies and directional dril-
ling companies are also good ideas to share the huge amount of
investment and produce spillover benefits. More specifically, there are
two policy implications.

Firstly, this article finds that the efficiency enhancement is possible
by introducing the new techniques. The empirical results show that
these unconventional oil and gas techniques can be either cheer or fear,
depending on the investment behavior. The positive spillover effects
between hydraulic fracturing and directional drilling is the key to im-
prove efficiency. Therefore, energy policies should be adjusted to en-
courage more cooperation, mergers and acquisitions among experts of
the two techniques in order to achieve the spillover effects, such as the
one between Mitchell Energy and Devon Energy, in line with anti-trust
laws.

Secondly, either of the two techniques alone leads to lower effi-
ciency. Therefore, the government should help decrease the “entry fee”
(e.g., the R &D costs) to encourage more entrants. This is even more
important currently, as lower break-even price is required in order to
survive in the world with low oil price. Policies to lower the cost can
help unconventional shale companies (mainly in the USA) to compete
with OPEC members. The government can provide some information
sharing platforms to release basic data and knowledge of shale re-
sources, and encourage the cooperation among different companies and
institutions.

This study discovers evidence of the competitiveness of the techni-
ques engendered by the shale revolution, which provides information
for policy makers and companies. Future studies can focus on the en-
vironmental effect of the shale revolution and analyze the social welfare
change brought about by these innovations. Moreover, scholars can
study how energy policies should be changed to face this competitive
entrant in the energy market. Finally, although the varying coefficient
model is a semiparametric method and more flexible than the standard
parametric method, it still has a rigid functional assumption, such as the
C-D and T-L forms. How to relax this assumption would be an inter-
esting field to explore.

Appendix A. Reasons to adopt time-invariant efficiency

In Eq. (7), the efficiency term, ui, is time-invariant. Then, the dependent variable of Eq. (8) (TEi) is time-invariant as well, since = −TE uexp ( )i i .
Whether to use time-variant or time-invariant efficiency is a problem that we cannot ignore. Many scholars have studied time-variant technical

efficiency. Cornwell et al. (1990) introduced both the within estimator (CSSW) and the generalized least squares estimator (CSSG), where they
assumed the firm effects of αi with = + +α θ θ t θ tit i i i1 2 3

2. Sickles (2005) later examined various specifications of the time-variant firm effect αit
modeled in other research, including = = + + −α γ t α bt ct α( ) [1 exp ( )]it i i

2 1 (Kumbhakar, 1990), = = − −α η α η T αexp [ (1 )]it it i i (Battese and Coelli,
1992), =α θ αit t i (Lee and Schmidt, 1993), and the general factor model = + +…+α c g c g c git i t i t iL Lt1 1 2 2 (Kneip, 1994; Kneip et al., 2003, 2012).

This article tested the difference if time-variant efficiencies are allowed but find no significant difference. Take one of the most popular method
(Battese and Coelli: = − −α η T αexp [ (1 )]it i) as an example, the estimation of η is −.002 with a p-value of .7553, which implies η is economically
and statistically insignificant. Since η is insignificantly different from 0, = − − ≈α η T α αexp [ (1 )]it i i. In other words, the change in efficiency for a
company is negligible. Therefore, we can use time-invariant efficiency.

Although the productivity (Total-Factor Productivity, or the frontier of the industry) changes dramatically across time because of the financial
crisis, technical revolution, and other events, the firm-specific technical efficiencies are pretty robust according to my own experience after working

Table 5
Efficiency regression results of the C-D varying frontier model over time.

TÊi 2010 2011 2012 2013

HFi −.139** −.142** −.138** −.123**
(.058) (.056) (.055) (.057)

DDi −.075* −.110*** −.103*** −.087**
(.041) (.040) (.037) (.041)

∙HF DDi i .192** .211*** .195** .182**
(.080) (.077) (.075) (.083)

Ri .126*** .131*** .135*** .130***
(.009) (.009) (.009) (.009)

Mi .003 −.002 .005 .0002
(.026) (.025) (.024) (.025)

Intercept −.348*** −.398*** −.453*** −.427***
(.054) (.055) (.056) (.059)

R2 .74 .75 .75 .73

Note: Significant at: *10, * *5 and * * * 1%; Standard error in parentheses.

16 Although innovation to make these techniques more environmentally friendly is necessary, it does not fall within the scope of the present article.
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in one of the largest OFS companies analyzing competitors in the OFS market. The robustness in efficiency is mainly because companies’ reactions
are very fast in this industry. OFS market is heavily affected by energy price and economic cycle. When the market is down, companies will sell asset,
hold cash, and cut headcount immediately, which guarantees the stability of the efficiency.

To sum up, both the statistical results and my observation of the industry imply that time-invariant efficiency is a valid assumption. The adoption
of time-variant efficiencies will lead to negligible difference but cost more degrees of freedom.

Appendix B. OMR data introduction and adjustment

This study uses data from the Oilfield Market Report (OMR) by Spears & Associates. This report details the global oilfield equipment and service
markets associated with five macro-segments: exploration, drilling, completion, production, and capital equipment. Spears & Associates began
tracking the OFS market in 1996 and publish its OMR annually. Each year, the report not only releases new data for the current year, but also updates
previously published data. Most numbers in the OMR are estimates developed by Spears through five sources: public company reports (about 100
firms), published information, interviews (about 2000 discussions), trade shows, and site visits.

There are several advantages of using the OMR dataset. Firstly, this report brings estimations under the same criteria. Different firms have
different segmentations, so direct use of their revenue declarations by product line from their financial reports is not wise. Secondly, this dataset is
widely used by most firms and clients in the field. Thirdly, Spears has investigated the numbers through many sources to confirm its estimations in
the past twenty years. Lastly, the OMR is updated each year, which alters any incorrect numbers according to the newest information.

In this study, three versions of the OMR (2000, 2011, and 2015) are used to collect firm-level data from 1997 to 2014, which is denoted as
OMR1997–2014. OMR2000 includes firm-level revenue by segment from 1997 to 2000, OMR2011 includes firm-level revenue by segment from
1999 to 2011, and OMR2015 includes firm-level revenue by segment from 2005 to 2014. Since different waves of data have different market
divisions, this study uses the market segmentation of OMR2015 and adjusts the other two datasets to acquire statistically comparable numbers.

The revision in OMR2000 consist of 1) the “Mud Logging” segment being renamed as the “Surface Data Logging” segment; 2) the “Field
Processing Equipment” segment being removed from the market; 3) the “Offshore O&M Services/Contracting” segment being added to the
“Offshore Contract Drilling” segment; and 4) the “Production Logging” segment being added to the “Wireline Logging” segment. Moreover, the
“Casing & Cementation Products” segment in both OMR2000 and OMR2011 is added to the “Completion Equipment & Services” segment. Finally, the
“Pressure Pumping Service” segment in both datasets is divided into the “Cementing” and “Hydraulic Fracturing” segments.

The OMR1997–2014 contains share and size analysis for 32 micro-market segments within the 5 macro-segments from approximately 600
companies working around the world. OMR1997–2014 gives detailed revenue by segment for 275 companies, 114 of which are public firms that
publish complete financial information annually. The other 300 smaller companies have been added to “Others” in the report. The detailed seg-
mentation is as follows:

I) Exploration segment includes 1) Geophysical Equipment & Services;
II) Drilling segment includes 2) Cementing, 3) Casing & Tubing Services, 4) Directional Drilling Services, 5) Drill Bits, 6) Drilling & Completion

Fluids, 7) Inspection & Coating, 8) Land Contract Drilling, 9) Logging-While-Drilling, 10) Offshore Contract Drilling, 11) Oil Country Tubular
Goods, 12) Solids Control &Waste Management, 13) Surface Data Logging;

III) Completion segment includes 14) Completion Eqpt & Services, 15) Coiled Tubing Services, 16) Hydraulic Fracturing, 17) Productions Testing,
18) Rental & Fishing Services, 19) Subsea Equipment, 20) Surface Equipment, 21) Wireline Logging;

IV) Production segment includes 22) Artificial Lift, 23) Contract Compression Services, 24) Floating Production Services, 25) Specialty Chemicals,
26) Well Servicing; and

V) Capital Equipment, Downhole Tools & Offshore Services segment includes 27) Downhole Drilling Tools, 28) Petroleum Aviation, 29) Offshore
Construction Services, 30) Rig Equipment, 31) Supply Vessels, and 32) Unit Manufacturing.

Appendix C. Estimating capital stocks using perpetual inventory method

The perpetual inventory method (PIM) is the most widely employed approach to estimate capital stocks in many statistical offices. Berlemann and
Wesselhöft (2014) review the three PIM approaches used most frequently in the literature, consisting of the steady state approach, the disequilibrium
approach, and the synthetic time series approach. After comparing the advantages and disadvantages of those three methods, they are able to
combine them into a unified approach in order to prevent the drawbacks of the various methods. Their approach follows the procedure proposed by
de la Fuente and Doménech (2006).

The PIM interprets a firm’s capital stock as an inventory of investments. The aggregate capital stock falls in the depreciation rate per period.
Therefore, the capital stock in period t is a weight sum of the history of the capital stock investment:
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i

i
t i

0
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However, a complete time series of past investments from day one is not available for many companies. Thomson ONE, Bloomberg, and FactSet
only cover the recent portion of investment history. Suppose the investment can only be tracked back to period t1, then the current capital stock can
be estimated by using
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Therefore, the information needed to calculate capital stock includes a time series of investment − +It i( 1), the rate of depreciate δ, and the initial
capital stock Kt0. Firstly, de la Fuente and Doménech (2006) propose smoothing the time-series investment data since the economies are on their
adjustment path towards equilibrium rather than staying in a steady state most of the time. Hence, this study smooths the observed capital ex-
penditure (investment) using a regression = + +I α β t ϵit i 1 for each firm. Secondly, this study follows the lead of Kamps (2006) and uses time-
varying depreciation schemes, which seems to be the most plausible variant. The time-variant smooth depreciation rate can be estimated as the fitted
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value of the regression = + +δ α β t ϵt 2 . This study collects a given firm’s annual depreciation and total capital data to calculate the depreciation rate
in accounting and use this information to run the regression. Finally, the initial capital stock at time t0 can be calculated from the investment It1, the
long-term investment growth rate gI , and the estimated depreciation rate δ: ≈ +K I g δ/( )t t I t0 1 1 , where the growth rate gI is β1 and the investment It1 is
the fitted value in the same regression. Similar to the method used in Berlemann and Wesselhöft (2014), this study assumes all the years before t1
without desegregated data have the same constant depreciation rate as year t1. But for all the recent years that we have investment data, the
depreciation rate is time variant. Therefore, Eq. (C-1) becomes:
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In our empirical study, t is 2014 for most companies that are still active while t1 presents the first year of investment data and varies across firms.
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