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ABSTRACT
Pesticides are commonly used for pest control to improve crop yield and quality. Global warming has been suggested to influence
pest pressure and optimal pesticide utilization. This study systemically assesses the impacts of rising temperatures on pesticide
usage based on novel panel data fromChina during 1998−2016. Estimation results show a nonlinear relationship between pesticide
usage and temperature. This effect is notably more pronounced in southern China compared to the north, especially under
extremely hot weather conditions. The overall influence of temperature on pesticide usage is further broken down into three
components: pesticide usage intensity, crop mix, and total planted area. Owing to the limited potential for expanding cultivation
in China, the intensity effect dominates the impacts of temperature on pesticide usage. Our findings suggest that the rising
temperature over the past two decades has led to a moderate reduction in pesticide usage in China.
JEL Classification: O13, Q16, Q54

1 Introduction

Climate change has altered surface temperatures, making
agriculture one of the most vulnerable sectors to rising
temperatures (IPCC 2019). Using exogenous variations in
weather conditions over time within a specific region, recent
studies have demonstrated that high temperatures increase the
risks to crop yields (Burke and Emerick 2016; Kawasaki 2023;
Mérel and Gammans 2021; Schlenker and Roberts 2009; Dell
et al. 2014). These studies specifically highlight the existence of
a temperature threshold, beyond which further heat exposure
results in significant yield losses.

Adapting agriculture to climate change, through measures such
as adopting irrigation, implementing soil conservation prac-

tices, and adjusting productivity-enhancing inputs (Sesmero
et al. 2018), is crucial for mitigating its negative impacts
(Chen and Gong 2021; Kawasaki 2019; McCarl et al. 2016)
and has remarkable implications for policy design. Examin-
ing how climate change affects production factors helps us
better understand farmers’ decision-making regarding adapta-
tion. However, agricultural input portfolios vary in terms of
climate change across regions. For example, the use of chemical
inputs fluctuates annually based on weather conditions and
soil spatial variability (Hollinger and Hoeft 1986; Raun and
Johnson 1999; Tremblay et al. 2012). Understanding how climate
change affects yields through its impact on input usage is
essential for evaluating current adaptation strategies and guiding
future approaches in agricultural development (Chen and Gong
2021).
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Aiming to enhance productivity and food security, agriculture has
become increasingly dependent on pesticides. These chemicals
are released into the atmosphere, pedosphere, and hydrosphere.
Their regular inflow and high persistence can lead to high pesti-
cide concentrations in environmental compartments over time,
negatively affecting non-target species (Koleva and Schneider
2009) and damaging the environment (e.g., water and air quality)
and human health (e.g., chronic and infectious diseases) (Larsen
and Noack 2017). For example, three out of every 100 agricultural
workers experience acute pesticide poisoning, leading to thou-
sands of fatalities, with developing countries accounting for 99%
of these deaths while using only 25% of the world’s pesticides
(Chakraborty and Newton 2011). Managing pesticide usage in the
context of climate change is crucial for policymakers and requires
a well-structured approach for a deeper understanding.

The 2018 IPCC report on the impacts of global warming of 1.5◦C
indicates that adaptation strategies based on increased pesticide
usage may increase risks to human health, oceans, and water
accessibility. These impacts may be influenced by climate change
because pest pressure and the optimal pesticide application rates
vary with changing climate conditions (Olesen and Bindi 2002;
Koleva and Schneider 2009; Noyes et al. 2009). Additionally,
global warming can accelerate the degradation of chemical com-
ponents due to acceleratedmicrobial and chemical reaction rates,
and pesticides are no exception to this phenomenon (Delcour
et al. 2015). Harvell et al. (2002) indicated that pest activities are
likely to increase under climate change, prompting farmers to
apply more pesticides during growing seasons to protect crops
from pests and diseases. At the same time, climate change
may also reduce pesticide usage. Biological studies have shown
that warm and dry conditions can enhance plant resistance to
pest infections, thereby reducing the need for pesticide usage
(Patterson et al. 1999). In addition, climate change impacts
crop growth, which in turn influences the adaptive behaviors
of farmers, including pesticide usage. For example, changes in
the spatiotemporal distribution of temperature and precipitation
can alter crop mixes across different regions, encouraging the
adoption of highly adaptable varieties and subsequently reducing
overall pesticide usage. These mixed results in the current
literature call for a systematic investigation into the effects of
rising temperatures on pesticide usage.

Aiming to fully capture the effect of rising temperatures on
pesticide usage, we construct a panel dataset covering 2479
counties in China from 1998 to 2016. Our analysis reveals the
complex relationship between temperature and pesticide usage,
offering new insights into the overall impacts of climate change.
We systematically assess regional variations in how temperature
impacts pesticide usage and further decompose the aggregate
effects into three components: pesticide usage intensity, cropmix,
and total planted area. In addition, we explore the long-term
effects of temperature increases on pesticide usage.

Our results show that pesticide usage is drastically affected
by temperature. In particular, a highly nonlinear relationship
exists between growing season temperature and pesticide usage.
Various specifications (piecewise linear, polynomial, and step
functions) consistently demonstrate that, during the growing
stage of crops, the relationship between pesticide usage and
temperature varies; it is positive at low temperatures, negative

at moderate temperatures, and positive again at high temper-
atures, before turning negative again under extremely high
temperatures. Pesticide usage in southern China is found to be
relatively more responsive to temperature changes, especially
under extremely high temperatures. Over the past two decades,
the observed increase in China’s temperature, approximately 85-
degree days, has led to a reduction of approximately 0.5% in
total pesticide usage. Furthermore, estimations based on long-
difference approaches indicate that temperature has a minor
long-term effect on pesticide usage, plausibly because the adjust-
ments in pesticide usage are generally cost-efficient and do not
require extensive planning.

This study contributes to the literature on agricultural adap-
tation to climate change by exploring its nonlinear effects on
total pesticide usage. A growing body of research focuses on
individual-level adaptation strategies to climate change, such as
changing crop mixes (Seo and Mendelsohn 2008; Kaminski et al.
2013; Yang and Shumway 2016; Sesmero et al. 2018), shifting from
single-cropping systems to double-cropping systems (Kawasaki
2019), adjusting planting and harvest timings (Cui and Xie 2022),
varying inputs, including planted area, labor, irrigation, and fertil-
izer (Kurukulasuriya and Mendelsohn 2007; Sesmero et al. 2018;
Aragón et al. 2021; Jagnani et al. 2021), and diversifying income
sources (Sesmero et al. 2018). Due to limited data availability,
only a few studies have examined how farmers adjust pesticide
usage in response to increasing temperatures. Jagnani et al. (2021)
report that Kenyan maize farmers increase pesticide usage due
to heat-induced biotic stress from diseases and pests. Möhring
et al. (2022) find that extreme heat reduces insecticide use among
Colorado potato farmers. Although pesticide applications are
less responsive to weather changes, Bareille and Chakir (2024)
investigate how farmers adjust pesticide applications for wheat,
barley, and rapeseed in response to weather conditions during
the growing season in the French department of Meuse. These
studies generally rely on individual-level data and focus on a
particular crop. In contrast, this study exploits intertemporal and
spatial variations in rich county-level panel data to systematically
explore the overall effect of temperature changes on pesticide
usage on the entire agricultural sector.

To the best of our knowledge, our study is most closely related to
Bareille et al. (2024), despite notable differences. They examined
pesticide purchases as a specific adaptation strategy for coping
with weather shocks, using zip code-level data from France
between 2014 and 2019. While their study is pioneering in per-
forming an econometric assessment of pesticide use intensity in
response to weather shocks, it does not explore whether warmer
temperatures will increase total pesticide use in the agricultural
sector. We examine the nonlinear relationship between tempera-
ture and total pesticide use, accounting for changes in acreage and
crop mix. Second, the impacts identified by Bareille et al. (2024),
based on 6 years of data, are short-term in nature and do not
inform the long-term adaptation to climate change. Therefore,
this study addresses the aforementioned gap in this field.

Another contribution of this study is the identification of the
dominant effects of temperature changes on total pesticide usage
by constructing a decomposition framework that considers inten-
sity, structure, and overall changes in cultivated area. Existing
studies often focus on some specific aspects, such as crop-specific
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yields (Deschênes and Greenstone 2007; McCarl et al. 2008;
Schlenker and Roberts 2009; Miller et al. 2021), planting acreage
(Miao et al. 2016), and total planted area (Aragón et al. 2021).
Notably, relying solely on crop yields to assess the challenges
posed by climate change assumes fixed crop mix. However, if
the planted area increases with temperature, then the yield loss
may be overestimated (Aragón et al. 2021). Thus, this study aims
to disentangle the various intertwining forces by decomposing
the overall effects, which informs policymakers’ policy design
and decision making with respect to future challenges posed by
climate change.

Finally, this study also makes a methodological contribution. We
develop a maximum entropy (ME) procedure to impute county-
level crop-specific pesticide usage intensity, which is essential for
our analysis, using province-level aggregated data. Conventional
ME studies for this type of imputation normally consider only
equality constraints. Building on recent developments in convex
analysis and interior-point optimization methods (e.g., Boyd and
Vandenberghe 2004), we develop a procedure that accommodates
equality (in terms of province level average) and inequality
constraints (in terms of known pesticide use intensity bounds).
Our simulations demonstrate that the proposed method reliably
imputes crop- and county-specific pesticide usage based on
aggregated data.

The remainder of this study is organized as follows: Section 2
briefly reviews the literature on how temperature affects pesticide
usage and examines trends in pesticide usage in China over
the past few decades. Section 3 outlines the empirical estima-
tion strategies, while Section 4 describes the data used in our
analysis. Section 5 reports the estimated impacts of temperature
on overall pesticide usage, explores regional variations in these
effects, presents robustness checks with alternative specifications
and weather variables, discusses the decomposition results, and
estimates the long-term effect. Section 6 concludes this paper.
A Supplemental Appendix includes some technical details and
additional estimation results.

2 Background

2.1 Temperature and Pesticide Usage

Pesticides play an important role in modern agriculture by reduc-
ing pest damage, therebyminimizing crop losses and contributing
to the doubling of agricultural yields over the past 40 years
(Larsen and Noack 2017; Tilman et al. 2002; Waterfield and
Zilberman 2012). However, their effectiveness and impact may be
sensitive to temperature (Olesen and Bindi 2002). Temperature
can influence pesticide usage through multiple channels. First,
high temperatures can reduce pesticide concentrations due to
increased volatilization and accelerated degradation, both of
which are strongly affected by high moisture content, elevated
temperatures, and direct exposure to sunlight (Wu and Nofziger
1999; Noyes et al. 2009; Delcour et al. 2015). Consequently, global
warming may accelerate the degradation of chemicals, driven
by increased microbial and chemical reaction rates and reduce
pesticide concentrations in the environment (Bloomfield et al.
2006; Delcour et al. 2015).

Second, high temperaturesmay create a highly favorable environ-
ment for insect and pathogen attacks (Bale et al. 2002; Bloomfield
et al. 2006; Rosenzweig et al. 2001). By contrast, warm winters
can reduce winter kill, leading to increased insect populations
in subsequent growing seasons (Singh et al. 2013). Furthermore,
droughts can alter the physiology of host species, lowering their
resistance to invasive insects, while simultaneously reducing the
populations of beneficial insects (Rosenzweig et al. 2001).

Third, temperature can influence the growth rate of crops, which,
in turn, affects pesticide usage. High temperatures and increased
CO2 concentrations, which notably alter photosynthesis activity,
promote plant growth and expansion. A high growth rate can
dilute the concentration of absorbed pesticides in plants, thereby
reducing pesticide residue (Patterson et al. 1999; Delcour et al.
2015). Conversely, a longer active growing season may allow
for increased farming activities, potentially leading to higher
pesticide usage.

Fourth, temperature changes can lead to shifts in phenology
and geographic distribution across a wide range of ecosystems.
Some studies have found that pest infestations often coincide
with modifications in temperature conditions (Rosenzweig et al.
2001). Temperature not only affects the availability of host
plants and refuges, but also improves dispersal, migration, and
population characteristics such as reproduction and growth rates
(Delcour et al. 2015). For instance, warm winters may encourage
many insect species to expand their geographical ranges to high
latitudes and altitudes (Bale et al. 2002).

The impacts of temperature on pesticide usage are further com-
plicated by the adaptive behaviors of farmers. In the short term,
farmers are likely to adjust pesticide usage or irrigation methods
to reduce the impacts of climate change (Woods et al. 2017). In
the long term, farmers may adopt more drastic measures such as
altering crop mixes or land use, which also affect pesticide usage
(Rosenzweig and Parry 1994; Olesen and Bindi 2002). The overall
impacts of temperature change on pesticide usage are complex,
necessitating a systematic analysis and careful estimation, which
is the primary goal of this study.

2.2 Pesticide Usage in China

China has experienced a rapid increase in pesticide usage over
the past decades. The total amount of pesticides applied annually
grew from 0.76 million tons in 1990 to 1.5 million tons in 2018,
as shown in Figure 1. During the same period, the intensity of
pesticide usage increased from 5 to 9 kg/ha, which is 3.1 times the
global average1.

In 2015, China’s Ministry of Agriculture introduced the “Action
Plan to Zero Growth in Pesticide Use (ZGPU) by 2020” to address
the severe non-point pollution resulting from pesticide overuse.
The objective of the ZGPU plan was to maintain pesticide use
per unit of land area below the average levels observed between
2016 and 2019, aiming to achieve zero growth in total pesticide
use by 2020. Total pesticide use has gradually decreased. Given
the increase in total planted area in recent decades and the
stability of crop mix, the recent reduction in pesticide usage is
largely attributed to improved efficiency in pesticide-intensive
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FIGURE 1 Pesticide usage in China. Source: The data are from
China’s National Bureau of Statistics and Food and Agriculture Organi-
zation.

crops, such as fruits and vegetables, which account for 14% of the
planted area. For example, between 2012 and 2018, pesticide usage
for apples and vegetables decreased by one-fourth and one-fifth,
respectively.

3 Empirical Strategies

This section first presents the empirical models used to esti-
mate the relationship between temperature and pesticide usage,
employing a standard panel fixed effects estimation. Second, we
explore the channels throughwhich temperature affects pesticide
usage by decomposing its effects on the total pesticide usage.
Finally, we examine the long-term responses of total pesticide
usage using a two-period panel of long differences approach.

3.1 Impact of Temperature on Total Pesticide Use

As Horowitz and Lichtenberg (1994) indicated, the effect of pesti-
cide depends on the correlation between random factors such as
weather and pest/disease levels and their marginal contributions
to crop outputs and no unambiguous theoretical predictions can
bemade (e.g., Dorschner et al. 1986; Schiedek et al. 2007;Maxmen
2013; Möhring et al. 2020). The scientific literature reviewed in
Section 2.1 also implies that rising temperature can affect pesti-
cide usage in different directions. Aiming to investigate the com-
plicated impacts of climate change on farmhousehold production
behavior, many studies rely on empirical models (e.g., Kawasaki
2019; Aragón et al. 2021; Jagnani et al. 2021; Cui and Xie 2022).

In this study, we opt to rely on empirical investigation to explore
this important topic. An important strand of literaturemodels the
pesticide usage of individual farmers using structural approaches
(e.g., Carpentier and Letort 2012; Kaminski et al. 2013; Bareille
and Chakir 2024). Due to the lack of micro-level data on Chinese
farmers, we conduct reduced-form analysis of pesticide usage,
leveraging the temporal and spatial variations in the panel data
to estimate the impacts of temperature on pesticide usage. Our

empirical model is as follows:

Ln 𝑃𝑖𝑡 = 𝛽0 +
𝐾∑
𝑘=1

𝑓𝑘 (𝑇𝑖𝑡; 𝛽𝑘) + 𝑋𝑖𝑡𝛾 + 𝜙𝑖 + 𝜇𝑡 + 𝑢𝑖𝑡, (1)

where 𝑃𝑖𝑡 denotes the total pesticide usage in county 𝑖 in
year 𝑡. The key explanatory variables

∑𝐾

𝑘=1 𝑓𝑘(𝑇𝑖𝑡; 𝛽𝑘) include 𝐾
terms of temperature variable 𝑇𝑖𝑡 during growing seasons2. This
parametrization provides the desired flexibility. Given that the
underlying relationship between pesticide usage and temperature
is likely nonlinear (e.g., Schlenker and Roberts 2009; Kawasaki
2019), using a single term based on average temperature runs the
risk of oversimplification and may lead to inconsistent estimates.

We use piecewise linear functions 𝑓𝑘(𝑇𝑖𝑡; 𝛽𝑘) to capture the
potentially nonlinear effects of temperature on pesticide usage.
Additionally, we explore alternative functional forms such as step
functions and Chebyshev polynomials, to assess the sensitivity
of our results to functional form specifications (reported in the
following section and in Appendix A.1 of the Supporting Infor-
mation). Our experiments indicate that the estimation results are
robust with respect to functional form specifications. For brevity,
we focus on estimations based on piecewise linear functions in
our discussion. Following Schlenker and Roberts (2009), we set
the knots of the piecewise linear functions, which correspond to
the threshold degree days at 11◦C, 21◦C, and 29◦C, according to the
best-fitting model with the highest 𝑅2 value3. Aiming to capture
detailed information on diurnal variation in daily temperature
𝑇𝑖𝑡 , we calculate the degree days using sinusoidal interpolation
between daily maximum and minimum temperatures.

The covariate 𝑋𝑖𝑡 includes daily average precipitation, sunlight
duration, relative humidity, and wind speed. A time-invariant
county fixed effect 𝜙𝑖 is included to control for heterogeneity due
to differences in factors such as soil quality, land topography,
and agricultural production practices. We use 𝜇𝑡 to capture year
fixed effects that account for technical advancements related
to pesticide usage, such as the introduction of new pesticide
varieties and the adoption of genetically modified crops. The
error term is denoted by 𝑢𝑖𝑡 and the parameters 𝛽 and 𝛾 are
to be estimated. We use a fixed-effects model, controlling for
county and year fixed effects, to estimate the panel dataModel (1).
Panel data approaches generally capturewithin-season, short-run
responses to weather fluctuations. Additionally, we apply a two-
period panel data model based on the long-difference approach
to examine the long-term effects of rising temperatures. The
approach is introduced in Section 3.3.

The error terms are likely spatially and serially correlated across
counties and years. High degree of spatial dependency arises
mainly from the natural spatial autocorrelation of weather vari-
ables and other factors influencing pesticide use, such as the
extent of agricultural collective services and agri-environmental
policies in surrounding areas. In China, prefecture-level cities
serve as the primary administrative units, comprising multiple
counties that share similar geographic features and environmen-
tal policy patterns. Therefore, we cluster the standard errors at
the county level and the prefectural city-by-year level to account
for spatial and temporal correlations4, following Cameron et al.
(2011) and Zhang et al. (2017). Clustering standard errors at a
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larger group level is a common method for addressing spatial
correlations across smaller units (Conley 1999; Wooldridge 2003)
and is widely used in the literature (Dell et al. 2012; Burke and
Emerick 2016; Olper et al. 2021). Alternatively, we also employ the
spatial heteroscedasticity and autocorrelation consistent (HAC)
estimator of the variance–covariance matrix, as introduced by
Conley (1999), to correct for spatial dependence in the estimation
results5.

3.2 Decomposition of Temperature Effects on
Pesticide Use

Decomposing aggregate pesticide usage can provide deeper
insights into the effects of temperatures. Previous studies have
examined the impacts of climate change on pesticides, finding
that the impacts of rising temperatures vary across crops (Chen
andMcCarl 2001; Rhodes andMcCarl 2020). We decompose total
pesticide usage as follows to explore the channels through which
temperature affects pesticide usage:

𝑃 =
∑
𝑗

𝑃𝑗 =
∑
𝑗

𝑃𝑗

𝐿𝑗
⋅
𝐿𝑗

𝐿
⋅ 𝐿 =

∑
𝑗

𝑃𝐼𝑗 ⋅ 𝑆𝑗 ⋅ 𝐿 , (2)

where 𝑃 is the total pesticide usage in a specific region, 𝑃𝑗 is the
pesticide usage for crop 𝑗, 𝐿 is the total planted area for crop
production, 𝐿𝑗 denotes the cultivated land area for crop 𝑗, 𝑃𝐼𝑗
refers to pesticide intensity of crop 𝑗, and 𝑆𝑗 is the share of crop 𝑗
according to planting area.

Taking the derivative of 𝑃 with respect to temperature 𝑇 then
yields

𝜕𝑃

𝜕𝑇
=
∑
𝑗

𝜕𝑃𝐼𝑗

𝜕𝑇
⋅ 𝑆𝑗 ⋅ 𝐿

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
Intensiveef fect

+
∑
𝑗

𝜕𝑆𝑗

𝜕𝑇
⋅ 𝑃𝐼𝑗 ⋅ 𝐿

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
Structuralef fect

+
∑
𝑗

𝜕𝐿

𝜕𝑇
⋅ 𝑃𝐼𝑗 ⋅ 𝑆𝑗

⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟
Extensiveef fect

. (3)

According to this model, changes in total pesticide usage depend
on the intensive, structural, and extensive effects of rising tem-
peratures. Section 2 has described the complexity of the effects
of rising temperatures on total pesticide usage, including the
agronomic mechanisms of pest and disease development and
crop growth, as well as the mechanism of farmers’ adaptive
behaviors. However, because adaptive adjustments themselves
alter pesticide use, the two types of mechanisms are not
completely independent. Consequently, few studies could have
explicitly identified the direct impact of temperature changes
on total pesticide use under observed weather and agricultural
production conditions as well as crop simulation models. The
decomposition of Equation (3) provides an economic framework
for quantitatively identifying the overall impacts of temperature
on total pesticide use. It ensures the completeness and exclusivity
of decomposing temperature impacts within the framework of
farmers’ economic decision-making via the intensive, structural,
and extensive margins.

Under the assumption of no transaction costs, all three of these
effects are likely to play a role. However, once the transaction
costs of adjustment are taken into account, the intensive effect is
likeliy to dominate in the short run. This is because the fixed costs

of adjusting crop structure and sowing area, including farmers’
skills and infrastructure, are high while the cost of changing the
intensity of pesticide use by farmers is considerably lower. This is
especially true in China as the potential arable lands have been
depleted.

Weutilize the following estimations based on agriculture-weather
panel data to evaluate the decomposition of the total climate
effects on pesticide usage intensity, crop mix, and total planted
area:

Ln𝑃 𝐼𝑗,𝑖𝑡 = 𝛼𝑗,10 +
𝐾∑
𝑘=1

𝑓𝑘
(
𝑇𝑖𝑡; 𝛼𝑗,1𝑘

)
+ 𝑋𝑗,𝑖𝑡𝛾𝑗,1 + 𝜙𝑗,𝑖 + 𝜇𝑡 + 𝜀𝑗,𝑖𝑡 ,

(4)

𝑆𝑗,𝑖𝑡 =
exp

(
𝛼𝑗,20 +

∑𝐾

𝑘=1 𝑓𝑘
(
𝑇𝑖𝑡 ; 𝛼𝑗,2𝑘

)
+ 𝑋𝑗,𝑖𝑡𝛾𝑗,2 + 𝜙𝑗,𝑖 + 𝜇𝑡

)

∑6

ℎ=1 exp
(
𝛼ℎ,20 +

∑𝐾

𝑘=1 𝑓𝑘
(
𝑇𝑖𝑡 ; 𝛼ℎ,2𝑘

)
+ 𝑋ℎ,𝑖𝑡𝛾ℎ,2 + 𝜙𝑗,𝑖 + 𝜇𝑡

) , (5)

𝐿𝑖𝑡 = 𝛼30 +
𝐾∑
𝑘=1

𝑓𝑘 (𝑇𝑖𝑡; 𝛼3𝑘) + 𝑋𝑖𝑡𝛾3 + 𝜙𝑖 + 𝜇𝑡 + 𝑣𝑖𝑡, (6)

where 𝑃𝐼𝑗,𝑖𝑡 and 𝑆𝑗,𝑖𝑡 denote pesticide intensity and planted area-
based share of crop 𝑗 in county 𝑖 in year 𝑡, respectively, and 𝐿𝑖𝑡 is
the total planted area of county 𝑖 in year 𝑡. We divide all crops into
six categories and use 𝑗 = 1, … , 6 to denote grain crops, potatoes,
cotton, sugar crops, oil-bearing crops, and vegetables and fruits6.
h has the same domain as 𝑗.[𝜀𝑖𝑡 𝑣𝑖𝑡] is a vector of error terms
and 𝛼 and 𝛾 are the parameter vectors to be estimated. Pesticide
intensity 𝑃𝐼𝑗 , crop share 𝑆𝑗 , and total planted area 𝐿, along
with estimated parameters, capture the intensive, structural, and
extensive effects of temperature on pesticide usage, as explained
in Equation (3).

We use a multinomial logit model, as given by Equation (5), to
estimate the effect of weather on the probability of alternative
crop planted areas. We estimate the crop mix effects using a
modified multinomial logit model, as outlined in Parks (1980),
Kala et al. (2012), and Cho and McCarl (2017), to ensure that 𝑆𝑗,𝑖𝑡
is a proper probability residing between 0 and 1. Further details
are presented in Appendix A.3 of the Supporting Information.
Moreover, to address potential interdependencies between crop
choices, we introduce a key control by including certain crop
prices, along with the prices of alternative crops in 𝑋𝑗,𝑖𝑡 , in
addition to the weather variables in Equation (5). This approach
enables us to account for the alternative relationships between
different crop choices.

3.3 Long-Term Effect on Pesticide Use

Quantifying the long-term effect of temperature changes on
pesticide usage is useful for both researchers and policymakers.
So far our estimation and subsequent decomposition temperature
effects on pesticide usage have been based on short-termweather
fluctuations. However, this decomposition may overstate the
impacts of climate change, as farmers alter their expectations on
climate change based on weather history and adapt their farming
practices accordingly, such as changing their crop mix response
to realized and/or expected climate changes over time.
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Aiming to examine the long-term effect of climate change on
pesticide usage, we conduct a two-period panel to utilize the
long-difference approach introduced by Burke and Emerick
(2016). This approach helps avoid potential bias due to the
presence of within-region time-varying unobservables that are
correlated with temperature and pesticide usage such as techno-
logical advancements and local environmental regulations. The
two-period long-difference panel model for the estimation of
long-term effects is as follows:

ΔLn𝑃𝑖𝑡 =
𝐾∑
𝑘=1

𝛽𝑘Δ𝐺𝐷𝐷
𝑘
𝑖𝑡
+ Δ𝑋𝑖𝑡𝛾 + 𝛿𝑡 + 𝜌𝑖 + Δ𝑢𝑖𝑡 , (7)

where t = 1, 2 denote the two subperiods. In this estimation, 𝛽𝑘
captures the effect of county i’s k th term of GDD in year t. 𝛿𝑡
accounts for the year fixed effects, and 𝜌𝑖 denotes unobserved
differences in average county-level trends. The other weather
control variables in the vector 𝑋 are constructed similarly. We
retain the same specification of four temperature variables with
thresholds at 11◦C, 21◦C, and 29◦C. Standard errors are clustered
at the county and prefectural city-by-year levels. We also consider
another common long-difference approach, originally proposed
by Burke and Emerick (2016) as a robustness check for the long-
term analysis; the results are reported in Section A.4 of the
Supporting Information.

4 Data

4.1 Economic Data

Agricultural production data, including county-level total pesti-
cide usage, planted area, and crop share, are sourced from the
Institute of Agricultural Information at the Chinese Academy
of Agricultural Sciences (CAAS). Our sample includes 167 and
2479 counties located to the south and north of the Tropic of
Cancer, respectively. The areas south of the Tropic of Cancer
typically experience year-round agricultural production, compli-
cating our analysis because we need to include winter as an
additional growing season. In contrast, counties located north
of the Tropic of Cancer do not engage in active agricultural
production during the winter months. For simplicity, we focus
on the 2479 counties located north of the Tropic of Cancer,
which cover 30 provinces/municipalities inmainlandChina from
1998 to 2016. Summary statistics for our sample are provided
in Table 17, with further details presented in Table A1 of the
Supporting Information.

An obstacle to our empirical analysis is the lack of crop-specific
pesticide usage data and corresponding total pesticide usage for
crop production at the county level. While crop-specific pesticide
usage data are available only at the provincial level, the CAAS
reports aggregate pesticide usage across all crops for each county,
although local ecological management differences are typically
minor. In order to tackle this challenge, we develop an ME
procedure to impute crop-specific pesticide usage for each county.
Details of this procedure and the estimation results are provided
in Appendix A.5 of the Supporting Information.

The proposed novel ME procedure imputes crop-specific pesti-
cide usage given limited provincial-level pesticide intensity and
county-level upper bounds for aggregate pesticide usage. In the
absence of actual county-level pesticide use data, we conduct
numerical simulations that emulate the real-world situations
considered in this study. The experiment proceeds as follows:
(1) we consider a hypothetical province with six crops and 83
counties (which is the average number of counties per province in
our sample). Each county’s area is randomly generated based on
a uniform distribution with a minimum of 5 ha and a maximum
of 185,000 ha (the range corresponds to the sample range of
county size). The average pesticide usage for each crop at the
province level is randomly generated from a uniform distribution
between 2 and 30 kg/ha (which corresponds to the sample
range of pesticide usage). (2) For each crop, pesticide usage at
the county level is generated based on a uniform distribution
supported between 0.5 and 1.5 times the provincial average usage.
In total, we generate 6 × 83 = 498 pesticide usage observations,
one for each crop/county. We then divide these observations by
their total sum, transforming them into probabilities that can
be estimated using the proposed ME method. (3) We calculate
the total pesticide usage per crop (6 measurements) and total
pesticide usage per county (83 measurements). Consider the
crop/county pesticide data as a 6 × 83 contingency table. Our ME
imputation aims to estimate the entire table using only limited
(6 + 83) aggregated measurements, which correspond to the row
and column sums of the contingency table.

This procedure is repeated 1000 times. We use two criteria
to gauge the quality of the ME imputation. The first metric
measures the correlation between the true proportions and the
estimated proportions. Panel A of Table A2 of the Supporting
Information shows that the estimated proportions of pesticide
usage for each crop closely align with the real proportions, with
a mean correlation value as high as 0.99. We also calculate
the Hellinger distance between these two probability vectors. A
Hellinger distance value of 0 indicates perfect agreement, while a
value of 1 indicates maximum discrepancy. The average Hellinger
distance is as small as 0.02, with amaximumat 0.03. These results
demonstrate that the proposed method reliably imputes a matrix
of nearly 500 entries using fewer than 90 measurements. Panel
B in Table A2 of the Supporting Information reports simulation
results for a “large” province with 2500 counties, following the
same design. The results are consistent with those from the 83-
county case, demonstrating that the quality of theME imputation
is not affected by the number of geographical units considered.
Overall, our simulations show that the proposed ME procedure
can reliably impute crop-specific pesticide usage at the county
level based on aggregated data at the province level.

Additionally, the differences between the yearly observed aggre-
gate pesticide usage and those recovered by the ME procedure
across counties are less than 5% (Table A3 of the Supporting
Information). Given the remarkably small scale of individual
farms in China, county-level data are suitable for investigating
pesticide usage. As suggested by Larsen and Noack (2017),
in highly homogeneous agricultural regions dominated by a
small number of crops, county-level cropland can serve as an
appropriate metric for studies where crop and pesticide data are
limited in spatial resolution.

6 Agricultural Economics, 2025
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TABLE 1 Summary statistics.

Variables
A. Economic variables Obs. Mean S.D. Min Max

Total pesticide usage (1000 kg) 44,350 563.06 586.92 4.74 5558.52
Pesticide intensity for grain crops
(kg/ha)

43,977 6.38 6.03 0.07 40.72

Pesticide intensity for potatoes (kg/ha) 24,851 4.16 3.13 0.01 17.23
Pesticide intensity for cottons (kg/ha) 20,255 22.70 12.24 0.90 50.33
Pesticide intensity for sugar crops
(kg/ha)

17,931 10.53 4.97 0.20 22.49

Pesticide intensity for rapeseeds
(kg/ha)

27,697 3.51 2.27 0.14 11.62

Pesticide intensity for vegetables and
fruits (kg/ha)

43,005 26.27 12.23 2.19 76.37

Share of grain crops (%) 44,350 63.68 21.14 0 100
Share of potatoes (%) 44,350 4.61 10.13 0 100
Share of cottons (%) 44,350 2.59 8.20 0 100
Share of sugar crops (%) 44,350 0.90 3.90 0 86.04
Share of rapeseeds (%) 44,350 5.31 9.86 0 100
Share of vegetables and fruits (%) 43,009 22.91 17.99 0.01 100
Total planted area (1000 ha) 44,350 53.87 46.56 0 619.90
Price of grain crops (CNY/kg) 44,350 1.37 0.35 0.01 4.03
Price of potatoes (CNY/kg) 23,491 0.86 0.29 0.23 2.00
Price of cottons (CNY/kg) 30,936 11.76 3.83 1.88 55.26
Price of sugar crops (CNY/kg) 23,747 0.26 0.12 0.03 1.08
Price of rapeseeds (CNY/kg) 29,653 2.69 0.81 0.14 7.09
Price of vegetables and fruits (CNY/kg) 42,828 1.37 0.55 0.23 5.54
Average price of labor (CNY/day) 44,350 27.34 12.66 0.69 121.10
Average price of pesticide (CNY/kg) 44,350 42.64 26.44 0.81 316.50

B. Climatic variabls

GDD5◦C–11◦C (D) 44,350 1401.07 214.64 0 1650
GDD11◦C–21◦C (D) 44,350 1696.41 452.20 0 2623.42
GDD21◦C–29◦C (D) 44,350 533.20 265.18 0 1352.22
GDD≥29◦C (D) 44,350 68.01 59.72 0 339.65
Precipitation (mm/day) 44,350 2.94 1.59 0.01 10.83
Average wind speed (m/s) 44,350 2.10 0.63 0.58 6.71
Average relative humidty (%) 44,350 68.50 9.69 30.10 88.65
Total sunlight duration (1000 h) 44,350 1.61 0.40 0.59 2.78

Note: This table shows summary statistics for the key variables from 1998 to 2016 across all counties. Data on the price of labor, pesticides, and agricultural
products are provided at the provincial level. All prices are adjusted using the Consumer Price Index, with average prices weighted by planting areas. Temperature
and weather variables are constructed for the growing season from March to November.

4.2 Climate Data

The climate data used in this study are obtained from the
China Meteorological Data Sharing Service System. These data
include the daily minimum andmaximum temperatures, average

temperature, precipitation, humidity, wind speed, and sun-
light duration from 825 weather stations across China. The
detailed daily weather data facilitate accurate estimation of the
weather conditions experienced by crops during their growing
seasons.
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The distribution of weather stations does not exactly align
with county designation. Some counties have more than one
station, while others have none. Aiming to address this problem,
we converted the station-level weather data and used spatial
interpolation to impute the weather data for each county. The
process follows the steps outlined below. First, themeteorological
variables were spatially interpolated using the inverse distance
weighting (IDW) method, which interpolates meteorological
variables at the station level onto a grid with a 500 m spacing.
This method is commonly used for spatial estimation of meteoro-
logical or pollution data (Currie and Neidell 2005; Schlenker and
Walker 2016; Yi et al. 2016). This method calculates a weighted
average of the daily observations from weather stations within a
100 km radius of each grid point, with the weights determined by
the inverse of the distance between the stations and the grid point
(Hatono et al. 2022; Lyu et al. 2024). Second, the grid-levelweather
data were aggregated to the county level, which was obtained
by averaging across all grid points within the administrative
boundaries of each county. Counties represent the penultimate
level of China’s administrative hierarchy and typically cover small
homogeneous areas. Thus, the aggregation bias at this level is
minimal, as suggested byOrtiz-Bobea (2021). Overall, this process
resulted in a comprehensive set of county-level weather variables
(i.e., temperature, relative humidity, precipitation, wind speed,
and sunshine duration).

Our temperature variables are constructed based on a fixed
growing season to ensure comparability of weather conditions
across years. The northern region tends to plant later than the
southern region, and planting dates may vary each year depend-
ing on weather conditions. Hence, we define the growing season
as spanning from March to November in the baseline model,
and examine its robustness with three alternative specifications.
We also follow Schlenker and Roberts (2009) in assuming that
temperature follows a sine curve, which interpolates between the
minimum and maximum temperatures of each day in every grid.
In particular, we generate a series of points at 15 min intervals to
measure temperature exposure, and the averages of these points
are used in our analysis.

Daily average precipitation, sunlight duration, relative humidity,
and wind speed were incorporated into the regression analysis of
pesticide usage (Zhang et al. 2017). Pesticide usage is influenced
by factors such as precipitation and humidity. Elevated soil
moisture contents and increased precipitation levels accelerate
pesticide degradation (Noyes et al. 2009), while wet conditions
also promote the germination of spores, the spread and activity
of zoospores, and the proliferation of fungi and bacteria (Rosen-
zweig et al. 2001). Conversely, droughts can affect the physiology
of host species, weakening their resistance to pest infestations.
Wind speed has been suggested to affect the effectiveness of
pesticide application (Desmarteau et al. 2020), and the spread of
pathogens (Patterson et al. 1999). Finally, sunlight duration could
also affect pesticide usage due to rapid pesticide volatilization,
which is mainly attributed to elevated temperatures and direct
sunlight exposure (Otieno et al. 2013). In addition, sunlight may
impact the reproduction and survival of pests and pathogens.
Overall, incorporating these variables helps account for the
effects of other climate/weather conditions, allowing for a clear
assessment of how temperature specifically affects pesticide
usage.

5 Results and Discussions

This section first reports the nonlinear effects of temperature
increase on pesticide usage and regional differences. It then
assesses the aggregate change in pesticide usage over the last
two decades due to temperature changes based on our empirical
findings. Furthermore, this section compares the heterogeneous
effects across regions and examines the robustness of the esti-
mation results with various alternative specifications. Finally,
the decomposition results and estimates of long-term effects are
presented.

5.1 Nonlinear Effects of Temperature

As the temperature increases, pesticide usage follows two phases
of rising and declining. Panel (a) of Figure 2 presents esti-
mates based on piecewise linear functions, along with their
95% confidence bands that take into account serial and spatial
correlations. During the first phase, the effect of temperature
on pesticide usage peaks at around 10◦C, which corresponds
to a critical period in crop planting. This finding aligns with
agronomic science, which indicates that crops are particularly
susceptible to pests, diseases, and weeds during the early stages
of planting and growth. Farmers often apply pesticides shortly
after planting as a preventive measure and control method.
During the subsequent growing season, when temperatures
range from approximately 10◦C–20◦C, an increase in temperature
can positively impact the growth of thermophilic crops such
as cotton, promoting their rapid growth and enhancing their
natural defenses against diseases (Shahzad et al. 2021). Once
temperatures reach 21◦C, pesticide usage experiences a second
phase of increase and decline as the temperature rises. The knot
effectively captures nonlinear patterns supported by agronomic
evidence. For instance, the pesticide application response near
21◦C is consistent with temperature-driven changes in pest
population dynamics. As demonstrated by Kenis et al. (2023),
the fall armyworm, a typical pest of maize and cereal crops,
has the highest larval survival rates between 26◦C and 30◦C,
with optimal temperatures (≈30◦C) boosting fecundity because
females can produce up to 1500 eggs. However, the negative effect
of temperature on pesticide application begins at 29◦C, indicating
that extreme heat reduces pesticide use. This finding may be
due to the fact that extremely high temperatures can negatively
impact specific pest species (Das et al. 2011).

Aiming to confirm that the above results remain valid in the
presence of other control variables, we report detailed estimation
results using piecewise linear functions in Table 2. Additional
weather variables, including wind speed, relative humidity, sun-
light duration, and their squars, are incrementally included in
Columns (2) and (3). The coefficients and significances of the
temperature variables are barely affected. In Column (4), we also
controlled for market relative prices in relation pesticide usage.
Adding the price ratios of the product to pesticide and the price
ratio of the product to labor does not significantly affect the results
for the temperature variable. In addition, we control for county-
level planted area in the estimation (Column [5] in Table 2),
and the estimates remain consistent with those obtained without
controlling for agricultural area.While planted area is a key input
factor in agricultural production, it can be substantially affected

8 Agricultural Economics, 2025
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TABLE 2 Estimated results based on piecewise linear functions.

(1) (2) (3) (4) (5)

GDD5◦C–11◦C (10D) 0.0050*** 0.0053*** 0.0050*** 0.0048*** 0.0044***
(0.0016) (0.0016) (0.0016) (0.0016) (0.0014)
[0.0017] [0.0017] [0.0017] [0.0016] [0.0014]

GDD11◦C–21◦C (10D) −0.0043*** −0.0045*** −0.0043*** −0.0043*** −0.0036***
(0.0013) (0.0013) (0.0013) (0.0013) −0.0012
[0.0014] [0.0014] [0.0014] [0.0013] [0.0020]

GDD21◦C–32◦C (10D) 0.0074*** 0.0078*** 0.0080*** 0.0080*** 0.0059***
(0.0019) (0.0019) (0.0019) (0.0019) (0.0017)
[0.0021] [0.0021] [0.0021] [0.0021] [0.0019]

GDD≥ 29◦C (10D) −0.0172*** −0.0155*** −0.0189*** −0.0181*** −0.0163***
(0.0034) (0.0036) (0.0036) (0.0036) (0.0031)
[0.0039] [0.0042] [0.0042] [0.0041] [0.0036]

Precipitation (mm/day) 0.0125 0.0151 0.0012 0.0074 −0.0134
(0.0212) (0.0228) (0.0226) (0.0223) (0.0196)
[0.0237] [0.0252] [0.0251] [0.0247] [0.0216]

Precipitation (mm/day)—Squared −0.0053** −0.0063** −0.0041 −0.0044* −0.0022
(0.0025) (0.0027) (0.0026) (0.0026) (0.0023)
[0.0028] [0.0029] [0.0029] [0.0028] [0.0025]

Average wind speed (m/s) 0.0894 0.0500 0.0490 0.1086
(0.0873) (0.0865) (0.0855) (0.0779)
[0.0814] [0.0805] [0.0792] [0.0740]

Average wind speed (m/s)—Squared −0.0067 0.0020 0.0019 0.0010
(0.0189) (0.0188) (0.0185) (0.0166)
[0.0172] [0.0171] [0.0168] [0.0155]

Average relative humidty (%) −0.0282* −0.0596*** −0.0497*** −0.0283**
(0.0149) (0.0164) (0.0162) (0.0143)
[0.0141] [0.0155] [0.0155] [0.0137]

Average relative humidty (%)—Squared 0.0002** 0.0005*** 0.0004*** 0.0002**
(0.0001) (0.0001) (0.0001) (0.0001)
[0.0001] [0.0001] [0.0001] [0.0001]

Total sunlight duration (1000 h) 1.3671*** 1.3451*** 1.0635***
(0.2385) (0.2324) (0.2022)
[0.2426] [0.2349] [0.2084]

Total sunlight duration (1000 h)—Squared −0.3886*** −0.3780*** −0.3102***
(0.0719) (0.0700) (0.0604)
[0.0726] [0.0704] [0.0624]

Price ratio for product and pesticide 0.1651*** 0.1623***
(0.0561) (0.0548)
[0.0527] [0.0515]

Price ratio for product and labor −0.0110 0.0008
(0.0159) (0.0146)
[0.0152] [0.0137]

Total planted area (1000 ha) 0.0142***

(0.0007)

(Continues)
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TABLE 2 (Continued)

(1) (2) (3) (4) (5)

[0.0006]
Year fixed effect Yes Yes Yes Yes Yes
County fixed effect Yes Yes Yes Yes Yes
R-squared 0.9012 0.9013 0.9016 0.9050 0.9227
Number of observations 44,350 44,350 44,350 44,336 44,336

Note: This table shows the coefficient estimates for a set of temperature variables fitted using a piecewise linear regression model with four splines. The dependent
variable is the logarithmic aggregate pesticides. Columns (2)–(5) evaluate the sensitivity of the results from Column (1) under alternative specifications. All
regressions account for county and year fixed effects. Standard errors (in parentheses) are two-way clustered by counties and prefectural city-by-year pairs, with
Conley standard errors reported in brackets. The significance levels are ***p < 0.01, **p < 0.05, and *p < 0.1.

FIGURE 2 Effects of temperature on pesticide usage. The figures show the estimated temperature effects on pesticide usage for the entire country
sample, northern China, and southern China. In each panel, the solid line represents changes in the logged total pesticide usage in relation to
temperatures, modeled using piecewise linear functions. The light red areas indicate the 95% confidence band, and the histogram of growing season
temperature is displayed at the bottom. All regressions account for precipitation, wind speed, relative humidity, sunlight duration, county fixed effects,
and year fixed effects. Standard errors are clustered at the county and prefectural city-by-year levels.

by weather conditions. Therefore, we focus on the estimates in
Column (3) of Table 2 for the subsequent analysis8.

Notably, the initial positive relationship between temperature
and pesticide usage, as revealed by our estimation, is consistent
with the finding of Jagnani et al. (2021). In addition, our results
indicate that heat stress may reduce pesticide usage, a conclusion
also supported by Möhring et al. (2022). Zhang et al. (2018)
report somewhat different results. Since their study relies on
coarser province-level data, their results are not directly com-
parable to ours, which are based on more detailed county-level
data.

To assess the robustness of the above results, we estimated the
effect of temperature on total pesticide use in Equation (1) using
other empirical scenarios or choices, including (1) the measure-
ment of temperature during the growing season (Appendices A.1
and A.2.1 of the Supporting Information); (2) the estimation of
bounds for pesticide intensity using the ME procedure (Section
A.2.2 of the Supporting Information); (3) alternative definition of
growing seasons (Section A.2.3 of the Supporting Information);

and (4) the inclusion of flexible weather controls (Section A.2.4
of the Supporting Information). These robustness checks used the
same model setup as the baseline estimates, without any further
modifications, and demonstrate that our main results are robust
to these alternatives.

5.2 Aggregate Impact

We next explore how rising temperatures affect total pesticide
usage, which has important policy implications. The effects of
climate change are usually calculated by adjusting daily tempera-
ture data according to some hypothesized warming scenario (e.g.,
Cui 2020; Perry et al. 2020; Miller et al. 2021). This calculation
involves increasing the daily minimum and maximum tempera-
tures incrementally (e.g., by +1◦C) and then re-interpolating the
data to calculate growing degree days. The implicit assumption
of uniform warming in this approach may not align with the
actual pattern of historical rising temperatures. Figure A2 of the
Supporting Information shows that the temperature distribution
based on a uniform 1◦C warming in 1998 differs notably from

10 Agricultural Economics, 2025
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TABLE 3 County-level aggregate effect of temperature on pesticides.

GDD intervals ∆GDD Pesticide use changea

Panel A. All samples Value (D) Percent (%) Value (kg) Percent (%)

GDD5◦C–11◦C 18.78 21.90 5331.17 −176.25
GDD11◦C–21◦C 51.72 60.32 −12657.84 418.48
GDD21◦C–29◦C 13.57 15.83 6083.88 −201.14
GDD≥29◦C 1.67 1.95 −1781.93 58.91
Subtotal 85.74 100 −3024.72 100

Panel B. North regions

GDD5◦C–11◦C 32.71 38.31 11739.24 642.13
GDD11◦C–21◦C 55.44 64.93 −15308.58 −837.36
GDD21◦C–29◦C 3.62 4.24 1463.26 80.04
GDD≥29◦C −6.38 −7.47 3934.26 215.20
Subtotal 85.39 100 1828.19 100

Panel C. South regions

GDD5◦C–11◦C 11.51 10.37 1924.75 −15.88
GDD11◦C–21◦C 58.38 52.58 −11477.61 94.67
GDD21◦C–29◦C 29.31 26.40 12785.77 −105.46
GDD≥29◦C 11.83 10.65 −15356.71 126.67
Subtotal 111.03 100 −12123.80 100

Note: The table shows the estimates and aggregate impacts on pesticide usage for the entire country, as well as for the northern and southern regions, under each
GDD interval change (5◦C–11◦C, 11◦C–21◦C, 21◦C–29◦C, and ≥ 29◦C, respectively) from 1998 to 2016. The differences between each GDD interval are calculated
using moving averages from 1998 to 2000 and from 2014 to 2016. The aggregate impacts are calculated based on the weight of each GDD interval relative to the
total warming and the average county-level data of pesticides, while the estimates are obtained from baseline regressions. The north and South regions comprise
1324 and 1155 counties, respectively.
aThe percentage columns are calculated by dividing the change in value of Δ𝐺𝐷𝐷 or pesticide use by the corresponding subtotal values in each panel.

the actual temperature distribution observed between 1998 and
20169. Given the nonlinearity of temperature impacts on pesticide
usage, the magnitudes of 𝐺𝐷𝐷 in different temperature, intervals
are critical for determining the overall effect on pesticide use. To
avoid drawingmisleading conclusions from unrealistic scenarios,
we used historical temperature data from 1998 to 2016 to estimate
the total effect of temperature on pesticide use (Panel [b] of Figure
A2 of the Supporting Information).

First, we measure the changes in 𝐺𝐷𝐷 s for each of the four
temperature intervals: [5◦C, 11◦C), [11◦C, 21◦C), [21◦C, 29◦C),
and≥ 29◦C, during the sample period from 1998 to 2016. Bymulti-
plying these changes by the corresponding estimated coefficients
reported in Column (3) of Table 2, we calculate the total estimated
change in pesticide usage associated with temperature change
between 1998 and 2016.

Panel A of Table 3 reports the aggregate effects of tempera-
ture on total pesticide usage using the entire samples. During
the sample period, the temperature generally increased, with
Δ𝐺𝐷𝐷11◦C−21◦C accounting for around 60% of the total increase in
𝐺𝐷𝐷. Consequently, the reduction in pesticide usage associated
with the increase in 𝐺𝐷𝐷11◦C−21◦C presents the primary effect
of temperature change. Although extremely high temperatures
only account for 2% of the total GDD increase, their substantial

marginal effects lead to a disproportionate reduction in pesticide
usage. Overall, an increase of more than 80◦C days in 𝐺𝐷𝐷

measured between 1998 and 2016, based on observed historical
temperature trends in China, results in a net decrease of slightly
above 0.5% in pesticide usage at the county level.

5.3 Heterogeneous Effects Across Regions

Our sample contains 1324 and 1155 counties from northern and
southern China and 1155 counties respectively. A substantial
climatic difference exists between northern and southern China,
separated by the Huai-River–Qin-Mountain line at latitude 33◦.
The climate in the south is subtropical, while northern China is
considerably cooler (Figure A3 of the Supporting Information).
Recent studies have demonstrated substantial differences in the
impacts of climate change on China’s agriculture between the
northern and southern regions (e.g., Wu et al. 2021; Chen et al.
2023).

Table 4 reports estimation results on regional differences in tem-
perature effects, using piecewise linear functions. The estimated
coefficients and their statistical significance, for the interactions
between temperature and regional dummy variables, indicate
similar effects of rising temperatures on total pesticide usage in

11

 15740862, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/agec.70057 by Z

hejiang U
niversity, W

iley O
nline L

ibrary on [09/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 4 Response heterogeneity between northern and southern regions.

(1) (2) (3) (4)

North × GDD5◦C–11◦C (10D) 0.0061*** 0.0067*** 0.0072*** 0.0069***

(0.0024) (0.0024) (0.0024) (0.0024)
North × GDD11◦C–21◦C (10D) −0.0043** −0.0049** −0.0056*** −0.0058***

(0.0020) (0.0020) (0.0020) (0.0020)
North × GDD21◦C–29◦C (10D) 0.0060** 0.0067** 0.0082*** 0.0085***

(0.0029) (0.0029) (0.0029) (0.0028)
North × GDD≥29◦C (10D) −0.0109* −0.0107* −0.0124** −0.0111*

(0.0058) (0.0059) (0.0060) (0.0059)
South × GDD5◦C–11◦C (10D) 0.0032 0.0033 0.0026 0.0028

(0.0021) (0.0021) (0.0020) (0.0020)
South × GDD11◦C–21◦C (10D) −0.0038** −0.0038** −0.0031** −0.0030**

(0.0016) (0.0016) (0.0015) (0.0015)
South × GDD21◦C–29◦C (10D) 0.0076*** 0.0080*** 0.0068*** 0.0065***

(0.0023) (0.0024) (0.0024) (0.0023)
South × GDD≥29◦C (10D) −0.0187*** −0.0167*** −0.0202*** −0.0193***

(0.0040) (0.0041) (0.0042) (0.0040)
Precipitation (mm/day) 0.0164 0.0178 0.0055 0.0122

(0.0216) (0.0229) (0.0228) (0.0225)
Precipitation (mm/day)—Squared −0.0058** −0.0066** −0.0046* −0.0049*

(0.0026) (0.0027) (0.0026) (0.0026)
Average wind speed (m/s) 0.0909 0.0528 0.0519

(0.0875) (0.0868) (0.0857)
Average wind speed (m/s)—Squared −0.0071 0.0016 0.0017

(0.0190) (0.0189) (0.0186)
Average relative humidty (%) −0.0274* −0.0569*** −0.0467***

(0.0157) (0.0169) (0.0167)
Average relative humidty (%)—Squared 0.0002** 0.0005*** 0.0004***

(0.0001) (0.0001) (0.0001)
Total sunlight duration (1000 h) 1.4406*** 1.4322***

(0.2442) (0.2379)
Total sunlight duration (1000 h)—Squared −0.4088*** −0.4023***

(0.0736) (0.0717)
Price ratio for product and pesticide 0.1658***

(0.0562)
Price ratio for product and labor −0.0120

(0.0159)
Constant Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes
County fixed effect Yes Yes Yes Yes
R-squared 0.9012 0.9013 0.9017 0.9051
Number of observations 44,350 44,350 44,350 44,336

Note: This table presents the coefficients associated with the temperature interacting with the northern/southern region indicator. The dependent variable is the
logarithmic aggregate pesticides. All regressions include county and year fixed effects. Standard errors in parentheses are two-way clustered by counties and by
prefectural city-by-year pairs. The significance levels are ***p < 0.01, **p < 0.05, and *p < 0.1.

12 Agricultural Economics, 2025
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both regions. These results are plotted in Panels (b) and (c) of
Figure 2 to facilitate visual inspection. Two key findings emerge
from the analysis. First, when the temperature rises from 5◦C
to 29◦C, the northern region exhibits a stronger response to
temperature increases compared to the southern region, with
larger and more significant regression marginal coefficients.
This finding indicates that the impacts of warming are more
concentrated in the cooler northern region, consistent with the
findings of Chen et al. (2023). Second, the converse holds under
extremely high temperatures. Compared to the northern region,
the impact of temperature changes on total pesticide usage
is substantially higher in the southern region. This finding is
mainly attributed to the extensive cultivation of crops with high
pesticide demands, such as rice. Rice growth is highly sensitive to
temperature and particularly vulnerable to heat stress, whichmay
cause pesticide usage in southern China to be strongly influenced
by high temperatures.

We report the aggregate effects for the northern and southern
regions in Panels B and C of Table 3, using the estimates in
Column (3) of Table 4, respectively. As previously mentioned,
the temperature increase in 𝐺𝐷𝐷11◦C−21◦C is critical, consistently
showing the substantial changes in pesticide use across both
regions. Additionally, the temperature increase in𝐺𝐷𝐷≥29◦C plays
a crucial role, especially in the southern region, indicating that
temperature change has a stronger effect on reducing pesticide
usage in this area.

5.4 Decomposition Results

We decompose the aggregate effect of temperature on pesticide
usage into the effects of usage intensity, crop mix, and total
planted area, as described in Equation (3) in Section 3.2. The
estimation details are provided in Appendix of the Supporting
Information.We use a data-drivenmethod to determine the func-
tional form of how increasing temperatures affect pesticide usage
intensity, crop formation, and overall planted area. Extremely
high temperatures tend to have a larger marginal effect; thus,
we compare two piecewise linear models: one using a single
threshold of 29◦C and another using the same three thresholds
(11◦C, 21◦C, and 29◦C) from the baseline model based on some
information criteria. The statistical test results, shown in Table
A11 of the Supporting Information, favor the second specification
with four linear splines for the pesticide intensity of crops.

Another challenge is defining one-degree increase in𝐺𝐷𝐷. Using
two linear splines as an example, the effects of a degree increase
in temperature differ between lower (<29◦C) and higher (≥ 29◦C)
temperatures. Thus, we construct weights based on the total
increase in growing degree days from 1998 to 2016. The average
𝐺𝐷𝐷 from 1998 to 2000 is used to represent the 1998 level, while
the average𝐺𝐷𝐷 from 2014 to 2016 denotes the value in 2016. The
ratio of the change in 𝐺𝐷𝐷5◦C−29◦C to the total increase in 𝐺𝐷𝐷
from 1998 to 2016 is used as the weight for a one-degree increment
of 𝐺𝐷𝐷5◦C−29◦C. A similar method is applied to measure the
weight for 𝐺𝐷𝐷≥29◦C. The weights for the model using four linear
splines are constructed similarly. These weights are then applied
to measure the marginal effect of a one-unit increase in 𝐺𝐷𝐷 on
pesticide usage across various channels based on Equation (3)
using the estimates for intensity, cropping structure, and planted

area fromTablesA12,A13, andA14 of the Supporting Information,
respectively.

We report the contributions of the three components to the total
impact of temperature on pesticide usage in Figure 3 and their
respective marginal effects in Table 5. The response of total crop-
land area to temperature change is not statistically significant,
whether we control for time fixed effects or provincial time
trends, so we exclude extensive effects from our calculations10.
The intensive effects contributemost to the impact of temperature
on pesticide usage at the national and regional levels. We report
the impact of the temperature on pesticide intensity for each
crop in Table 5. Our findings demonstrate that temperatures
drastically alter pesticide intensity but not uniformly across
crops. Grain crops are the main driver of changes in pesticide
intensity, possibly because they require notably more pesticides
than other crops and account for 64% of the total planted area. In
addition, after accounting for year fixed effects and the relevant
economic variables, such as the price of alternative crops, our
results indicate that while changes in total planted area do not
contribute to variations in the total amount of pesticides used
(Table A14 of the Supporting Information), evidence of notable
adjustments in pesticide application intensity is obtained for
specific crops (Table A12 of the Supporting Information). These
results underscore that the observed changes in total pesticide
usage predominantly mirror adjustments in application intensity
rather than area changes, providing important insight into how
agrochemical inputs respond to temperature changes.

5.5 Long-Term Effect

Table 6 presents the estimates with a two-period panel of long
differences suggested by Burke and Emerick (2016), aiming to
capture the long-term effects of temperature on pesticide use over
time. Aiming to perform differencing, we define two subperiods:
1998–2007 and 2007–2016. We calculate the endpoints as 3-year
averages to capture the change in average temperature and
pesticide usage over time. For example, for the year 1998, we take
the average for each variable over the period 1998–2000, and the
other three endpoints are calculated similarly. For the sub-sample
1998–2007, we calculate the difference between 1998 and 2007 for
each variable. Similarly, we applied the same difference between
the observations in 2007 and those in 2016. The coefficients
for almost all temperature terms in Table 6 are not statistically
significant, indicating that rising temperatures have little long-
term effect on pesticide usage. Furthermore, these conclusions
are consistent with those obtained similarly using the direct
long-difference method initially proposed by Burke and Emerick
(2016). The estimation results are reported in Table A15 of the
Supporting Information, with additional descriptions provided in
Section A.4 of the Supporting Information.

The results on the lack of long-term effect can be explained in
terms of both adaptive pesticide usage and shifts in crop mix.
First, farmers may improve the efficiency of pesticide use by
adapting more appropriate types of pesticides or timing of appli-
cations in response to climate change. For example, agronomists
have observed that prolonged drought leads to an increase in
insect pests and a decrease inweeds (Peters et al. 2014). As a result,
the use of insecticides will increase and the use of herbicides will

13
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FIGURE 3 Decomposition of the effects of temperature change on pesticide usage at the county level. The figure presents the marginal effect of
temperature change on pesticide usage, excluding the extensive effect, for a 1𝐺𝐷𝐷 increase at the county level between 1998 and 2016. The 95% confidence
interval is derived from 1000 bootstrap repetitions. For each bootstrap replication, a bootstrap sample is constructed by sampling with replacements
from the observed data. The bootstrap samples are clustered at the county level, preserving all within-county correlations. For each bootstrap sample,
we estimate our main specification using Equations (4) and (5), and calculate the marginal impacts using Equation (3).

TABLE 5 Decomposition of the marginal effects of temperature on pesticide usage based on one unit GDD increase.

(1) Intensive effect (2) Structural effect
𝝏𝑷𝑰𝒊

𝝏𝑻
⋅ 𝑺𝑰𝒊 ⋅ 𝑳 Percent 𝝏𝑺𝑰𝒊

𝝏𝑻
⋅ 𝑷𝑰𝒊 ⋅ 𝑳 Percent

(kg) % (kg) %

Grain crops −23.39 35.29 1.19 −12.28
Potatoes −10.01 15.10 −2.27 23.43
Cottons −4.15 6.26 −3.19 32.92
Sugar crops −7.66 11.56 0.29 −2.99
Rapeseeds −0.57 0.86 −2.16 22.29
Vegetables and fruits −20.50 30.93 −3.55 36.64
Subtotal −66.28 100 −9.69 100

Note: The marginal effects are evaluated at the sample means for the period 1998−2006 using Equation (3) in Section 3.2.
The percentage columns are calculated by dividing the change in pesticide usage (in kilograms) by the corresponding subtotal values in each column. Standard
errors are obtained via bootstrapping with 1000 replications, using a method similar to that in Figure 3. The coefficients for the intensive and structural effects are
statistically significant at the 1% level.

decrease, and this structural change will lead to a decrease in
the total use of pesticides. Second, it is widely recognized that
warming temperatures reduce yields for a wide range of crops
(Hasegawa et al. 2021; Zhu et al. 2022), and therefore subsequent
crop restructuring due to changes in relative returns may reduce
pesticide demand. This indirect effect may not be immediate as
structural adjustments are often costly. We also note that this
result is to some degree consistent with the key finding from our
decomposition analysis: the primary effect of temperature change
on pesticide usage occurs through adjustments on pesticide use
intensity, while its indirect effects through crop mix and land use
are rather minor in short term.

Another possible reason is the relatively short span of our
data. Kelly et al. (2005) indicated that climate change entails a
prolonged learning and adaptation process for farmers. Studies
on the long-term effects of climate change generally consider time

spans of more than 30 years, testing the stability of regression
coefficients over time, which naturally requires relatively long
panels (e.g., Burke and Emerick 2016; Mérel and Gammans 2021;
Ortiz-Bobea 2021). In contrast, the current study is based on a
sample period of only 19 years.

6 Concluding Remarks

The threats posed by climate change to farming and agricultural
production are considered one of the greatest challenges to
the global food supply. Against this backdrop, identifying the
total impacts of climate change on pesticide usage, along with
a detailed decomposition of its mechanisms, can increase our
understanding of the impacts of climate change on agriculture.
Unlike previous studies based on pesticide use intensity, this
paper is more concerned with sustainable development from the

14 Agricultural Economics, 2025
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TABLE 6 Long-term impacts on pesticides under panel long differences.

1999–2011 1999–2012 1999–2013
2003–2015 2002–2015 2001–2015

(1) (2) (3) (4) (5) (6)

GDD5◦C–11◦C (10D) 0.0010 0.0031 −0.0032 −0.0007 −0.0058 −0.0049
(0.0042) (0.0042) (0.0045) (0.0046) (0.0039) (0.0040)

GDD11◦C–21◦C (10D) −0.0003 −0.0010 0.0005 −0.0008 0.0015 0.0010
(0.0030) (0.0029) (0.0027) (0.0027) (0.0026) (0.0027)

GDD21◦C–29◦C (10D) −0.0039 −0.0024 −0.0038 −0.0022 −0.0054 −0.0059
(0.0040) (0.0040) (0.0039) (0.0038) (0.0040) (0.0040)

GDD≥ 29◦C (10D) 0.0134 0.0120 0.0120 0.0094 0.0076 0.0098
(0.0091) (0.0087) (0.0094) (0.0091) (0.0105) (0.0100)

Precipitation Yes Yes Yes Yes Yes Yes
Other weathers No Yes No Yes No Yes
Economic variables No Yes No Yes No Yes
Year fixed effect Yes Yes Yes Yes Yes Yes
County fixed effect Yes Yes Yes Yes Yes Yes
R-squared 0.7966 0.8077 0.8704 0.8783 0.8823 0.8902
Number of observations 4512 4510 4538 4536 4494 4492

Note: The dependent variables in all regressions is the difference in the log of smoothed pesticides. The controls are all similar to those in the main specification of
Table 2. Data in Columns (1)–(6) represent a two-period panel with 12-, 13-, and 14-year differences. The long difference for each period is calculated as the average
of the first three years and the last three years. All regressions include county and year fixed effects. Standard errors (in parentheses) are two-way clustered by
counties and by prefectural city-by-year pairs. The significance levels are ***p < 0.01, **p < 0.05, and *p < 0.1.

perspective of the impact of increasing temperatures on total
pesticide use. We systematically explore the complex phased
impact of temperature rise on pesticide use based on a large-scale
cross-regional data study in China and provide new insights into
the impact of rising temperatures on pesticide use. In addition,
this study innovatively presents a decomposition framework for
analyzing the impacts of climate change on total inputs of agri-
cultural production, including three types of impacts: intensity,
structure, and planted area. Third, climate change research is
often challenged by missing data on pesticide use across regions
and crops. We develop a mathematical method based on entropy
maximization for data imputation to address this problem.

Our investigation reveals a nonlinear relationship between tem-
perature increase and pesticide usage, indicating that extremely
high temperatures are likely to reduce pesticide usage. Pesticide
usage in northern China, which is cooler than southern China,
is more responsive to rising temperatures as they increase from
5◦C to 29◦C. The effect of temperature change on pesticide usage
is relatively mild under extreme heat compared to that in the
southern region. Calculation based on our estimation results
indicates that China’s pesticide usage decreased by approximately
0.5% in response to an increase of more than 80◦C days in
𝐺𝐷𝐷, as measured by historical temperature trends during the
study period. We further decompose the impacts of temperature
on total pesticide usage into intensive, structural, and extensive
effects. The results show that the main impact of temperature
on pesticide usage is through its effect on changes in pesticide
intensity. Moreover, the long-term effect of temperature increase
on pesticide usage is insignificant.

There are several policy implications of this study. First, the
process of agricultural green transformation warrants more
attention, especially for the main grain-producing areas in north-
ern China with mild temperatures, as there is considerable
uncertainty about the impact of sustained temperature increases
on the demand for pesticides. Second, pesticide research and
development needs to take into account the impacts of climate
change. Because of the nonlinear response of pesticides to rising
temperatures, research and development of pesticides can benefit
from factoring in the characteristics of local climate change.
Third, governments can design policies to reduce the impact
of climate change on the pesticide supply system. For example,
as temperatures rise, the demand for herbicides and fungicides
may decreasewhile the demand for insecticides increases. Timely
public dissemination of relevant weather forecast and market
information can contribute to a stable and resilient supply chain
of pesticides and other critical agricultural inputs.
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Endnotes
1The data are available at http://www.fao.org/faostat/en/#data.
2 In our study, we defined the growing season as a fixed period (typically
corresponding to the warm months of the year). In addition, we
introduced a seasonal temperature variable into Equation (1) to better
capture the effect of seasonal temperature changes on pesticide use. The
results show that total pesticide use responds to temperature changes
in a manner that is generally consistent with the baseline estimates.
Specifically, temperature changes during the spring (March to May)
and summer (June to August) had a substantial effect on pesticide use,
while the effect of fall (September to November) temperatures was less
pronounced. These results are available upon request.

3We also experimented with a single knot specification as in Schlenker
and Roberts (2009). The overall results are similar, although the three-
knot model consistently outperforms the one-knot model in terms of
goodness-of-fit (e.g., lower AIC/BIC). These results are available upon
request.

4For robustness checks, we re-estimated the baseline model with
two-way clustered standard errors at the county level and province-
by-year level. The key temperature coefficients remain stable. Since
the province is the principal administrative division in China, with the
prefecture being the level between the province and the county, we do
not cluster by province because our data includes only 30 provinces,
which is relatively few for effective clustering (Angrist and Pischke
2009; Zhang et al. 2017). The regression results are available upon
request.

5The Conley covariance matrix is a weighted average of spatial autoco-
variances, with weights determined by the product of Bartlett kernels
in two dimensions. We selected a cutoff radius, which represents the
distance at which spatial dependence is assumed to be zero. We choose
a cutoff of approximately 100 km (Dell et al. 2012) and assumed 5 lags
for serial correlation. Choosing other cut points produces qualitatively
similar results. Due to space limits, we only reported Conley standard
errors (shown in brackets) in Table 2. The Conley standard errors of
other tables are available upon request.

6The grain crops include rice, wheat, soybean, and corn.
7Due to its special natural environment and incomplete data, Tibet is not
included in our analysis.

8Controlling a dummy variable for the ZGPU program does not
significantly change the major estimation.

9To make the two scenarios comparable, we normalized the historical
temperature changes from 1998 to 2016 to match the temperature
change size in the+1◦C uniformwarming scenario. First, we calculated
the sum of the temperature changes in each degree interval under
the +1◦C uniform warming scenario, and then divided the sum of
the temperature changes in each degree interval from 1998 to 2016 to
obtain a multiplier factor. Second, we expanded all the temperature
change values for each temperature interval of the period 1998–2016 by
multiplying the above multiplier factor to make the uniform warming
scenario comparable with the historical temperature increase from 1998
to 2016.

10 Including the extensive effect does not affect our main conclusions
and the intensive effect remains the dominant factor. The results are
available upon request.
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