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Abstract
The goal of this article is to answer two questions: Has world agricultural convergence occurred? If not, how can this goal be
fulfilled? This article introduces a model averaging method to consider both a parametric and a semi-parametric SFA model
to better estimate technical efficiency. Then, three types of convergence tests are employed to check if world agricultural
catch-up occurs and to determine the degree of convergence across different groups of countries. The empirical results on a
balanced panel of 126 countries from 1970–2014 show that world agricultural convergence has not occurred. This article
then investigates the situations in different groups of countries and discusses how to use international trade, irrigation
system, and structural transformation to improve agricultural efficiency and to diminish the efficiency gap among different
countries in the future.
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1 Introduction

Agriculture plays a fundamental role in human history.
Prior to the Industrial Revolution, agriculture was the major
economic activity and enabled the human population to
grow. As a result, agricultural growth has been regarded as
an essential condition, or even a precondition, for the rise of
human civilization. Although the share of agriculture in
total GDP kept decreasing, agriculture is still important after

the Industrial Revolution. On the one hand, agriculture
remains a vital and unique instrument for achieving poverty
alleviation, especially in the rural areas (Thirtle et al. 2003;
World Bank 2007; Chen and Gong 2021). On the other
hand, agriculture has significant impacts on industrializa-
tion, urbanization, and the long-term evolution of the
economy (Ashraf and Galor 2011; Carillo 2018). Some
scholars (e.g., Lewis (1954), Ranis and Fei (1961), Foster
and Rosenzweig (1996), Bustos et al. (2016), and Schmidt
et al. (2018)) believe that higher agricultural productivity
can enhance human capital accumulation, reallocate labor
and other resource towards the industrial sector, and
therefore stimulate the process of economic development.
Other scholars (e.g., Matsuyama (1992), Foster and
Rosenzweig (2004), Galor and Mountford (2008)), how-
ever, highlight that agricultural productivity growth may
foster the comparative advantage of the agricultural sector,
limit human capital formation, and hinder industrialization,
especially in an open economy. To summarize, agriculture
has always been a key determinant of economic growth.

To investigate the relationship between changes in agri-
cultural productivity and long-run economic growth (in
both agricultural and industrial sector), accurate estimation
of agricultural productivity is necessary and therefore has

These authors contributed equally: Lingran Yuan, Shurui Zhang, Shuo
Wang, Zesen Qian, Binlei Gong

* Binlei Gong
gongbinlei@zju.edu.cn

1 Department of Agricultural Economics and Management, School
of Public Affairs, Zhejiang University, Hangzhou, China

2 School of Economics, Zhejiang University, Hangzhou, China
3 Academy of Social Governance, Zhejiang University,

Hangzhou, China
4 Academy of Social Governance, China Academy for Rural

Development, Zhejiang University, Hangzhou, China

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s11123-021-00600-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11123-021-00600-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11123-021-00600-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11123-021-00600-5&domain=pdf
http://orcid.org/0000-0002-0615-9341
http://orcid.org/0000-0002-0615-9341
http://orcid.org/0000-0002-0615-9341
http://orcid.org/0000-0002-0615-9341
http://orcid.org/0000-0002-0615-9341
mailto:gongbinlei@zju.edu.cn


been the subject of intensive research since the 1950s
(Coelli and Rao 2005). Ruttan (2002) divides the com-
parative research on agricultural productivity growth into
three stages. In the first two stages, efforts were directed
towards measuring the single/partial factor productivity
and then total factor productivity (TFP) (e.g., Kögel
and Prskawetz (2001), Jin et al. (2002), O’Rourke and
Williamson (2005), Strulik and Weisdorf (2008), Jin and
Deininger (2009), Vollrath (2011), Yu (2012), and Gong
et al. (2021)), whereas agricultural convergence tests in
productivity and efficiency are the core of the third and
current stage. Examining the evidence and rate that agri-
cultural productivity is converging across countries is an
issue of enduring interest, and for good reason: It indicates
whether poor countries are catching up with rich countries
(Henderson and Russell 2005) and clarifies the conditions
under which nations benefit from an “backwardness
advantage” to help design relevant development policies
(Inklaar and Diewert 2016). Moreover, it can reflect the
changes in comparative advantages of agriculture across
countries and hence affect the structural transformation as
well as the demographic transition.

The frontier productivity approach, including stochastic
frontier analysis (SFA) and data envelopment analysis
(DEA), is the most frequently used method in this line of
research (Ruttan 2002; Coelli and Rao 2005). Compared
with the classic production function method, this frontier
approach allows for the further decomposition of pro-
ductivity growth into shifts in the world frontier as well as
changes in technical efficiency (Alene and Coulibaly 2009).
In a seminal work of Kumar and Russell (2002), technical
efficiency improvement is labeled as a technological catch-
up and indicates convergence, since it measures countries’
movements toward the best global practice, or production
frontier.

Some studies (e.g., Coelli and Rao (2005) and Rezitis
(2010)) on agricultural productivity have employed the
DEA approach to measure agricultural TFP/efficiency and
test agricultural convergence. However, recent studies have
found that agricultural productivity estimates using the
DEA method often yields anomalous results (Headey et al.
2010). Nin et al. (2003) find that DEA-based TFP estimates
typically lead to very different results when compared with
those generated by every other measure of agricultural
development, because DEA fails to distinguish productivity
from measurement error and white noise. Different from
many other industries, white noise and measurement error
are significant challenges and problems in agricultural
productivity analysis. On the one hand, agriculture is sen-
sitive to and severely affected by certain difficult-to-observe
shocks (e.g., changes in policies and prices, diseases and
pests, as well as rainfall and temperature). On the other
hand, agricultural data from Food and Agriculture

Organization of the United Nations (FAO), the main data
sources for this line of study, can be deeply flawed, espe-
cially for small and poor nations without adequate capacity
for statistical collection (Headey et al. 2010). Neither of
these problems can be fully addressed in DEA, as it is a
deterministic approach.

Stochastic frontier analysis, however, can capture mea-
surement error and white noises in the disturbance, and
therefore rules them out from the productivity estimates.
Using both the DEA and SFA approaches on FAO data,
Coelli et al. (2004) and Headey et al. (2010) find that SFA
results are considerably more stable and credible than DEA
results. However, most of these SFA studies (e.g., Kumb-
hakar and Wang (2005), Deliktas and Balcilar (2005), and
Headey et al. (2010)) use the Battese and Coelli estimator
(BC, hereafter), which is proposed by Battese and Coelli
(1992) and has a similar monotonicity restriction on tech-
nical efficiency for all countries. As a result, BC92 fails to
reflect the non-monotonic fluctuation in efficiencies across
countries and over time. For example, the Green Revolution
was introduced to various countries in different periods and
the achievements in agricultural catch-up differed across
countries and over time. In recent years, many new SFA
models (e.g., Greene (2005), Greene (2008), Wang and Ho
(2010), Kneip et al. (2012), and Kumbhakar et al. (2014))
are constantly developed to allow more flexible trend of
efficiencies. To our knowledge, however, less effort has
been made to apply these new models to test world con-
vergence in agricultural efficiency. Therefore, the first
puzzle is to find appropriate SFA estimators that can better
capture the heterogeneity in country-level efficiency trend
of agriculture.

Once the technical efficiencies are estimated, the next
question is how to investigate convergence. Existing con-
vergence tests include σ-convergence test, unconditional β-
convergence test and conditional β-convergence test
(Cameron et al. 2005; Madsen 2007; Ruan et al. 2008;
Inklaar and Diewert 2016). Moreover, the degrees of con-
vergence in different regions and different groups of
countries are of great importance. Finally, how to improve
technical efficiency and hence accelerate the speed of con-
vergence is also a question of enduring interest in devel-
opment economics.

This article aims to answer all of the questions men-
tioned above, especially those related to estimating
accurate technical efficiency and investigating whether
agricultural convergence occurs. Firstly, a Jackknife
model averaging method is applied in this article, which
can consider both a parametric and a semi-parametric
SFA model to better estimate technical efficiency. Then,
the aforementioned convergence tests are employed to
determine whether world agricultural catch-up occurred
as well as the degree of convergence among different
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groups of countries. It is worth noting that efficiency
convergence only indicates that countries in the same
group are becoming closer and closer, which can be either
“good” or “bad”.1 Similarly, efficiency divergence only
indicates that countries in the same group are becoming
more dispersed, which can also be “good” or “bad”.
Therefore, this article further investigates the hetero-
geneity in efficiency convergence and divergence,
respectively. Finally, this article analyzes potential
methods to improve agricultural efficiency and diminish
the productivity gap among different groups of countries.

This study mainly contributes to the literature on agri-
cultural convergence in three ways: (1) it tests not only the
world agricultural convergence, but also the situations in
different groups of countries; (2) it further analyzes how to
accelerate technological catch-up in different countries and
finds that the different major driving forces to achieve
convergence within rich countries and poor countries; and
(3) compared with existing efficiency convergence ana-
lyses, it further estimates technological progress to inves-
tigate the heterogeneity in efficiency convergence and
divergence, respectively. Utilizing a balanced panel of 126
countries from 1970–2014, the empirical results show that
world agricultural convergence has not occurred. This
article then investigates the situations in different groups of
countries and discusses how to use international trade,
irrigation system, and structural transformation to improve
agricultural efficiency and to diminish the efficiency gap
among different countries in the future.

The rest of the paper is organized as follows: Section 2
establishes the model, Section 3 provides data description,
Section 4 presents the empirical results and makes some
discussions, and Section 5 concludes the paper.

2 Model

This section begins with an introduction to stochastic
frontier model and how different models can be combined
to estimate efficiency. Then three types of convergence tests
are established to measure agricultural efficiency con-
vergence. Finally, endogeneity problems are discussed.

2.1 Stochastic frontier analysis

Productivity This article adopts stochastic frontier analysis
(SFA) to estimate technical efficiency, which has been used
in some studies (e.g., Jin et al. 2010, Wang et al. 2016,

Ma et al. 2019, and Gong and Sickles 2020) to measure the
productivity gap. It is worth noting that the DEA also has its
own advantages, as it does not need to impose assumptions
of parametric functional forms and distributional assump-
tions on random noise and inefficiency as in the SFA.
However, measurement errors may be pertinent in the
USDA-ERS dataset (Alston and Pardey 2014), which is
employed in this article. Since flexibility is less important
than measurement errors in this particular application, we
choose to use the SFA. The classic SFA model with the
Cobb-Douglas formation was first proposed by Aigner et al.
(1977) and Meeusen and Van den Broeck (1977), then
developed by Schmidt and Sickles (1984) under a panel
data setting,

yit ¼ f Xitð Þ � ui þ νit ¼ αþ PK
k¼1

βkxkit � ui þ νit

¼ αi þ
PK
k¼1

βkxkit þ νit;

ð1Þ

where yit is the output of country i at time t in logarithms,
and xki measures the k-th input of country i at time t in
logarithms. Xit ¼ x1it; x

2
it; ¼ ; xKit

� �
is a vector of all K types

of inputs. f Xitð Þ ¼ αþPK
k¼1 β

kxkit describes the production
frontier. ui is a non-negative random term that indicates the
vertical distance of country i production to the frontier, and
hence the gap with the “best practice” level identified by the
most productive country. Technical efficiency can be
derived by TEi= exp(−ui), which ranges from 0 to 100%.
vi is the typical disturbance.

It is worth noting that the technical efficiency term, ui, is
assumed to be time-invariant in Eq. (1). Therefore, αi can be
modeled by the fixed effects or random effects methods.
However, the technical efficiency of a country may change
over time, as will the debate of convergence and divergence.
Moreover, some scholars (e.g., Kumbhakar and Wang (2005),
Headey et al. (2010), Inklaar and Diewert (2016), and Zhang
et al. (2020)) believe that the Transcendental Logarithmic
(T-L) specification for the production function fits data better
than the Cobb–Douglas (C-D) specification, as it provides
suitable second-order approximations. Accordingly, a sto-
chastic frontier model in T-L specification and time-variant
technical efficiency has the form:

yit ¼ αt þ
XK
k¼1

βkxkit þ 0:5
XK
m¼1

XK
n¼1

βmnxnitx
m
it � uit þ νit;

ð2Þ
where αit= αt− uit measures total factor productivity in
logarithms, which is determined by both the frontier αt and
the efficiency uit. Moreover, the productivity growth, Δαit,
can be decomposed into technological change (shifts in the
production frontier, or notionally, Δαt) and efficiency change

1 A “good” convergence occurs when the leading countries experience
normal or fast technological progress whereas the lagging countries
grow even very fast. A “bad” convergence occurs, on the other hand,
when the lagging countries grow slowly but the leading countries grow
slower or even experience stagnation.
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(distance to the frontier, also known as technological catch-
up, or notionally, Δuit) (Henderson and Russell 2005).

A new wave of studies (e.g., Cornwell et al. (1990),
Kumbhakar (1990), Battese and Coelli (1992), Lee and
Schmidt (1993), Kneip et al. (2003), and Sickles (2005)) have
developed various models to estimate the time-variant effi-
ciency in the 1990s and 2000s. Shang (2015) and Gong
(2020a) introduce a number of competing approaches and
compares them under different settings. One of the most
popular time-variant estimators is the BC estimator estab-
lished by Battese and Coelli (1992), where uit=exp(−η(t−
T))·ui and ui � Nþðμ; σ2μÞ is a truncated normal distribution.
Under this assumption, Eq. (2) can be solved by Maximum
Likelihood Estimation (MLE). Most existing SFA studies,
such as Deliktas and Balcilar (2005), Kumbhakar and Wang
(2005), and Headey et al. (2010), adopted the BC estimator to
investigate economic convergence or technological catch-up.

The BC estimator has a monotonicity restriction on
technical efficiency. Moreover, this monotonic trend has a
constant growth rate and is the same for all of the countries,
as η is time-invariant and country-invariant. If η is negative,
then technical efficiency is decreasing over time for all
countries, therefore leading to a conclusion of economic
divergence. The case in which ηis positive implies that all
countries are getting closer to the frontier over time and
therefore suggests economic convergences to a single TFP
level (σ-convergence). A zero η indicates that technical
efficiency is time invariant, which implies that the gaps
across countries do not change over time.

However, the assumption of time-invariant and country-
invariant growth rates in efficiency that is held by the BC
estimator is unrealistic. Aside from the example of the Green
Revolution in the previous section, less efficient countries
can replicate the production methods, technologies and
institutions of efficient and frontier countries. This catch-up
effect can be realized through international trade and irriga-
tion investment. International trade makes the new produc-
tion methods and technologies accessible to less efficient
countries, whereas establishing irrigation systems and culti-
vating new cropland can improve agricultural productivity.
Moreover, structural transformation may also affect technical
efficiency, since the TFPs for crop production and livestock
production are different. Since the efficiency determinants,
including international trade, irrigation investment, and
structural transformation, change across countries and over
time, so does technical efficiency.

This article aims to investigate the efficiency changes in
agriculture over the period of 1970–2014, during which
both the macro and micro environments changed dramati-
cally. For example, the Green Revolution helped many poor
countries produce more food and generated catch-up
effects. Some less developed countries, such as China,
achieved remarkable agricultural growth as a result of

several waves of institutional reforms and market dereg-
ulations. The dissolution of the Soviet Union and the
establishment of the World Trade Organization (WTO) in
the 1990s provided more opportunities for international
trade and global cooperation. The BC estimator fails to
capture both the changing macro environment and country-
level factors due to its rigid assumption of the time-invariant
and country-invariant efficiency trend. Therefore, this arti-
cle employs two other stochastic frontier methods that are
more flexible in order to capture the time-variant and
country-variant efficiency trend.

The first stochastic frontier model, the Cornwell-
Schmidt-Sickles (CSS) estimator, is proposed by Cornwell
et al. (1990), which has a quadratic time-variant intercept of
each country based on Eq. (2)

αit ¼ θi1 þ θi2t þ θi3t
2; ð3Þ

where the quadratic equation of time captures the non-linear
trend of efficiency over time, and the country-specific
parameters θi1− θi3 capture the heterogeneity in the
efficiency trend across countries. The CSS model is derived
by a Generalized Least Squares (GLS) estimator.

The second stochastic frontier model, the Kneip-Sickles-
Song (KSS) model, is proposed by Kneip et al. (2012) who
believe that country-level efficiencies are affected by some
time-variant variables and therefore model efficiencies
through a linear combination of some basis functions.
Mathematically, the KSS approach models the individual
effects in Eq. (2) have the form

uit ¼
XL
r¼1

θirgr tð Þ; ð4Þ

where the basis functions consist of g1(t), …, gL(t), and
θi1, …, θiL are the corresponding country-specific parameters.
As a semi-parametric model, KSS relaxes some rigid
formation assumption in the parametric models, such as BC
and CSS. Moreover, KSS can be regarded as a generalized
model that nests both the BC and CSS estimators. More
specifically, if L= 3 and the polynomial functions are the basis
functions, the CSS model is a special case of the KSS model,
whereas the BC model is nested in the KSS model if L= 1 and

g1 tð Þ ¼ exp �η t � Tð Þð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
s¼1 exp �η t � Tð Þð Þ2

q
.

2.2 A combination of the CSS and KSS models

There are both advantages and disadvantages to the CSS
model and the KSS model. The CSS model is more com-
putationally friendly, but relies heavily on the rigid quad-
ratic formation assumption. The KSS model, however,
relaxes the formation assumption to capture a more general
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functional form of the efficiency trend, but may encounter
computational challenges. Therefore, the CSS estimator is
preferred if the true data generating process (DGP) of effi-
ciency approximates to the quadratic formation; otherwise,
it is likely to underperform the KSS estimator. However, the
true DGP is unobserved and varies case by case, which
makes it necessary to find an optimal approach to better use
these estimators.

One popular approach is to use some model selection
criterion to choose either CSS or KSS models, such as
adjusted R2, Akaike Information Criterion (AIC), or Baye-
sian Information Criterion (BIC). However, a small varia-
tion in data might result in different selection of the “best”
model under the same criterion if the criterion scores hap-
pen to be close across models, not to mention the different
results due to varying selection of the criteria. Moreover,
more than one candidate model may partially capture the
underlying DGP (Shang 2015). In terms of global agri-
cultural production, some countries may have a quadratic
trend of productivity growth, whereas other countries may
not. The CSS estimator is preferred for the first group of
countries and the KSS estimator is preferred for the second
group of countries. Finally, the trend of productivity growth
for the same countries may also vary over time, and
therefore CSS and KSS estimators should be utilized for
different periods.

Considering the complexity of the true DGP in cross-
country agricultural production during such a long sample
period, we need to find an alternative approach that allows
the joint utilization of different candidate models. This
article therefore adopts a model averaging method to assign
weights to each candidate model based on the model’s
ability to explain the sample data (Balcombe and Rapso-
manikis 2010; Cho and Kasa 2017). If one candidate model
dominates in describing the true DGP and approximating
the underlying mechanism, model averaging methods can
then assign all the weights to that model during model
selection. Therefore, model selection is a special case of
model averaging. Another advantage of model averaging is
the robustness of the estimation results. As has been men-
tioned, a slight change in data or a different use of criteria
may cause a different model selection and very different
estimation results. However, such changes have limited
effects on the weights assigned to various candidate models
and therefore cause limited variation in the estimation
results.

Various model averaging methods are applied in the lit-
erature. The information criteria-based method assigns weights
to candidate models based on information criteria (Buckland
et al. 1997; Gong 2018b), such as AIC or BIC. However, the
effectiveness and quality improvement are difficult to test.
With this concern in mind, a jackknife model averaging (JMA)
method, proposed by Hansen and Racine (2012), assigns

weights based on a “leave one out” cross-validation criterion.
The JMA method is adopted in this article, as it is asympto-
tically optimal and approaches the minimum expected square
errors as the sample size is close to infinity. More specifically,
JMA is employed in this article to assign weights to the
CSS and KSS models as it best fits the data. Let us denote
the jackknife estimates as byCSS ¼ byCSS1 ; ¼ ;byCSSn

� �
and byKSS ¼ byKSS1 ; ¼ ;byKSSn

� �
, where byCSSi and byKSSi measure

the fitted value of country i’s production utilizing the KSS
and CSS methods, respectively, after the observations of the i-
th country are removed. The jackknife weight w* of CSS
model is obtained by minimizing the cross-validation
criterion w� ¼ argmin0�w�1CVn wð Þ ¼ 1

nbe wð Þ0be wð Þ, wherebe wð Þ ¼ y� wbyCSS � 1� wð ÞbyKSS.
As a result, the jackknife model averaging CSS & KSS

stochastic frontier model is

yit ¼ w�yCSSit þ 1� w�ð ÞyKSSit ;

where yCSSit represents the CSS estimator based on Eqs. (2)
and (3), and yKSSit represents KSS estimator based on Eqs.
(2) and (4). The overall technical efficiency is the jackknife-
weighted averages of the CSS and KSS estimators:

TEit ¼ exp �buitð Þ ¼ exp � w�buCSSit þ 1� w�ð ÞbuKSSit

� �� �
:

ð5Þ

2.3 Convergence tests

To assess the degree of convergence, this article considers
three measures. The first method is the σ-convergence,
which measures the cross-sectional dispersion of efficiency
changes and has been widely used in existing studies (e.g.,
Lichtenberg (1994), McCunn and Huffman (2000), and
Rezitis (2010)). σ-convergence implies the extent to which
productivity and efficiency levels are becoming more
similar over time. To test for σ-convergence, consider the
regression equation

var lnTEð Þt¼ ϕ1 þ ϕ2t þ εt; ð6Þ
where var(lnTE)t is the variance of technical efficiency for
all countries at time t in logarithms, which is computed by
1
N

PN
i¼1 ln TEitð Þ � lnTEt

� �2
, where lnTEt ¼ 1

N

PN
i¼1 ln TEitð Þ

is the average level of efficiency in logarithms. The
sufficient condition for σ-convergence is that ϕ2 is
significantly negative, which implies the convergence to
the frontier for all countries over time. Otherwise, the
unconditional σ-convergence does not happen. Furthermore,
when the test rejects unconditional σ-convergence, it can
then be employed to subgroups of countries (e.g., McCunn
and Huffman (2000)) or to sub-periods (e.g., Rezitis (2010)),
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which extends a test of convergence across all countries
within a group or during a subperiod.

The second method is the unconditional β-convergence,
which occurs when less efficient countries grow faster than
more efficient ones. Following Sala-i-Martin (1996) and
Young et al. (2008), an unconditional β-convergence
equation is proposed of the form in this article

ΔTEit ¼ ϕ1 þ ϕ2TEi;t�1 þ εt; ð7Þ
where TEi,t−1 is the technical efficiency in the previous
period and ΔTEit= 100 * (TEit− TEi,t−1) measures the
percentage change in efficiency for country i at time t.
When ϕ2 is statistically significant negative, it implies that
less efficient countries grow faster.

The third method is the conditional β-convergence,
which implies possible channels through which con-
vergence can be achieved or accelerated in the future. A
conditional β-convergence occurs when countries experi-
ence β-convergence that is conditional on other variables
(i.e., the state of each country). This article establishes a
conditional β-convergence equation of the form

ΔTEit ¼ ϕ1 þ ϕ2TEi;t�1 þ γZi;t�1 þ εt; ð8Þ
where Z is a vector of variables that may affect agricultural
technical efficiency, which includes the total volume of
international trade (trade), proportion of cropland to total
agricultural land (cropland), proportion of agricultural land
that is irrigated (irrig), and the output ratio of livestock in total
products (livestock). A conditional β-convergence is accepted
if ϕ2 in Eq. (9) is negative and significantly different from
zero. Some scholars (e.g., Raiser (1998) and McCunn and
Huffman (2000)) replace previous period efficiency lnTEi,t−1

with lnTEi,t0 in the β-convergence equation to measure the
initial level of efficiency and therefore define less efficient and
more efficient countries. This revision may not work well for
studying agricultural convergence, as it relies heavily on the
first year of the sample period. Agricultural production suffers
from great risk and uncertainty, which leads to frequent
fluctuation in productivity and efficiency, especially for small
and poor countries. As a result, a different selection of the
initial period may cause very different results. Since the
dependent variable ΔTEit is in the range 0–100, this article
uses a Tobit model to solve Eqs. (7) and (8). Moreover, this
article follows Kumbhakar et al. (2015) to correct the standard
errors using the bootstrap method.

This article uses the aforementioned measures (σ-con-
vergence, unconditional β-convergence, and conditional β-
convergence) to test agricultural convergence for 126 countries
during the period from 1970–2014. Moreover, this article tests
the σ-convergence and β-convergence for various groups that
may share the same steady state, in addition to the test of the
whole world: (1) Since geographic condition is time invariant
and highly related to the initial conditions of the countries, this

article tests agricultural convergence in different regions.2 (2)
Bartkowska and Riedl (2012) point out that the initial condition
of per capita income plays a crucial role in determining con-
vergence groups. This article also tests the convergence for
low-income, lower middle-income, upper middle-income, and
high-income countries, as countries in each of the four groups
are likely to have a similar initial level of per capita income. (3)
Another popular classification of countries is less developed
countries (LDCs) and developed countries (DCs), which not
only reflects the difference in income level, but also many other
development factors that may lead countries to different steady
states. Therefore, the third set of convergence tests is for DCs
and LDCs separately. (4) International trade enhances the speed
of technology transfer (Cameron et al. 2005) and therefore
affects convergence. As a result, it may be easier to achieve
convergence in GATT/WTO member countries. This article
therefore tests agricultural catch-up for GATT/WTO member
countries and non-member countries. (5) An alternative clas-
sification of developing countries that not only considers
development level, but focuses on agricultural development
level, is proposed in the World Development Report 2008:
Agriculture for Development by World Bank (World Bank,
2007), which indicates that agriculture operates in three dif-
ferent worlds: agriculture-based, transforming and urbanized
countries3. This article also tests if convergence occurs within
each of these three groups in addition to developed countries.

2.4 Endogeneity problem

The stochastic frontier model may experience an endo-
geneity problem because some productivity information
considered in the decision-making process of production is
unobservable by scholars (Ackerberg et al. 2015; Gong and
Sickles 2021). Amsler et al. (2016) introduce a way to solve
endogeneity in stochatic frontier models. Following their
approach, this article tests the endogeneity of each input by
employing a control function method and correct the bias if

2 The eight geographic regions are developed Africa, Sub-Saharan
Africa, North America, Latin America, Europe, Asia, WANA (West
Asia and North Africa), and Oceania. Agricultural convergence within
the same regions might be easier due to the convenience of population
and resource flow, such as in EU (Pasquali, 2020).
3 The contributions of agriculture differ in these three groups. All
developing countries are divided into these three groups based on the
share of agriculture in aggregate GDP growth over the last 15 years,
and the current ratio of total poverty in rural areas based on a poverty
line of $2-a-day. Agriculture-based countries are mainly Sub-Saharan
nations, where agriculture is a major source of growth. Transforming
countries are mainly in East Asia and MENA, where the contribution
of agriculture to GDP growth is small but poverty mainly occur in
rural areas. Urbanized countries are those in Central Asia and Europe
as well as Latin America and the Caribbean, where agriculture con-
tributes even less to GDP growth, and the share of poverty in rural
areas is smaller. To summarize, agriculture-based countries are least
developed whereas urbanized countries are relatively developed.
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necessary. Lagged values of inputs are employed to serve as
instruments, which is recommended in Levinsohn and
Petrin (2003), Guan et al. (2009), and Gong (2018a).

An endogeneity problem may also occur in the con-
ditional β-convergence function in Eq. (9), since inter-
national trade may affect technical efficiency and thus
lead to a reverse causation issue. The instrument variable
(IV) method is usually employed to solve this bias. This
article uses per capita agricultural production (agri_pcit)
and per capita arable land (land_pcit) as instruments for
international trade, which is suggested in Chanda and
Dalgaard (2008) and Madsen (2009). Moreover, the
delayed value of international trade can also mitigate the
causality problem.

3 Data

Following Gong (2020b), country-level agricultural input
and output data for 1970–2014 are collected from the
Economic Research Service of the United States Depart-
ment of Agriculture (USDA-ERS).4 Output is measured by
the sum of the production value of 189 crop and livestock
commodities(Yit, in billions of international dollars at
2005’s constant price), which is initially reported in the
FAO. USDA-ERS also reports six agricultural inputs,
including agricultural labor (laborit, in millions of eco-
nomically active adults), agricultural land (landit, in mil-
lions of hectares of rain-fed cropland equivalents), livestock
capital on farms (livestockit, in thousands of cattle equiva-
lents), total animal feed (feedit, in millions of metric tons of
crops and crop processing residues calculated in dry-matter
equivalents), fertilizer consumption (fertilizerit, in millions
of metric tons of N, P2O5, K2O), and total stock of farm
machinery (machineryit, in millions of 40-CV tractor
equivalents). These variables are used in CSS and KSS
models to estimate technical efficiency with the help of the
JMA method.

Moreover, USDA-ERS also reports the proportion of
cropland to total agricultural land (croplandit) as well as the
proportion of agricultural land that is irrigated (irrigit) and
separates countries into eight geographical regions and four
income classes as mentioned in Section 2.3. Data for the
total volume of international trade in agricultural products
(tradeit) are collected from the NBER-UN database for
1970–1994 and the CEPII-BACI database for 1995–2014.5

The output share of livestock in total agricultural products
(livestockit) is collected and calculated from FAO’s

database. The list of GATT/WTO members is available on
the WTO website,6 whereas the list of developed countries
is from the International Monetary Fund (IMF). Population
size (popit) is collected from World Bank databases. Finally,
per capita arable land (land_pcit) and per capita agricultural
production (agri_pcit) are calculated using population data
from World Bank databases and agricultural output and
land data from USDA-ERS.

Combining all the data mentioned above, this article is
based on a balanced panel of 126 countries from
1970–2014. These countries account for roughly 86% of the
world’s total population and 82% of the world’s total
agricultural production in 1970, whereas these two figures
increased to 89 and 90%, respectively, by 2014. Table 1
presents the distribution of these countries under various
classifications in 2014. Under geographic classification,
countries in America, Europe and Oceania have abundant
agricultural products as their shares of agricultural products
are higher than their shares of population, whereas low per
capita agricultural output and shortages of food mainly
occurred in Sub-Saharan African countries as they account
for 11.2% of global population, but only produce 5.5% of
the world’s agricultural output. In terms of income levels,
low-income and lower middle-income countries, on aver-
age, have per capita agricultural outputs that are sig-
nificantly and slightly lower than the world average,
respectively, whereas high-income and upper middle-
income countries on average have per capita agricultural
outputs that are significantly and slightly higher than world
average, respectively. Therefore, income level also seems
like a valid standard to classify countries into different
groups that may have different conditions in agriculture.
The same conclusion applies to development groups, trade
groups and agricultural groups, as various groups under
each of the three classifications have a significantly different
per capita agricultural output. More specifically, developed
countries, GATT/WTO members, and urbanized countries
on average have better agricultural conditions than less
developed countries, non-GATT/WTO members, and
agriculture-based countries, respectively. In summary, sig-
nificant differences in agriculture across groups are
observed under all five classifications. Therefore, con-
vergence tests are also applied within each group under
these classifications.

Table 2 provides summary statistics of the key variables.
These 126 countries on average generated agricultural
products worth 10.3 billion international dollars at 2005’s
constant price. Roughly 60% of the agricultural outputs are

4 https://www.ers.usda.gov/data-products/international-agricultural-
productivity/
5 Detailed introduction of NBER-UN database and CEPII-BACI
database can be found in Gong (2020b).

6 Information about GATT members and WTO members are sepa-
rately available at https://www.wto.org/english/thewto_e/gattmem_e.
htm and https://www.wto.org/english/thewto_e/whatis_e/tif_e/org6_e.
htm.
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crops and 40% are livestock-related products. In terms of
agricultural inputs, these countries on average use a 7.0
million-strong labor force, 15.1 thousand cattle equivalents
of livestock capital, 0.2 million tractor equivalents of farm
machinery, 0.8 million metric tons of fertilizer, and 6.7
million metric tons of feed, in addition to utilizing 13.3
million hectares of agricultural land, where 79% is cropland
and 12% is equipped for irrigation. Moreover, the average
volume of international trade is 5.9 billion dollars. Finally,
the average per capita amount of arable land is 0.44 hectare,
and the average per capita agricultural products are valued
at 310 international dollars at 2005’s constant price.

4 Estimation results

4.1 Frontier and efficiency estimates

Table 3 reports the estimation results of various SFA
models. The first and second columns show the results of
the CSS and KSS models, respectively. The jackknife
weight assigned to the CSS model is 0.489, whereas the
weight assigned to the KSS model is 0.511, which shows
that both models can partially capture the true DGP, but the
semi-parametric KSS weighs more. Column 3 of Table 3
reports the estimation result of the model averaging CSS &
KSS stochastic frontier model using the jackknife weights
reported in the first two columns. Based on Column 3, labor
elasticity and livestock elasticity are the greatest, followed
by the elasticity of land and feed, whereas the elasticity of
machinery and fertilizer are the lowest.

Using the estimations in Table 3, this article calculates
the output elasticity with respect to each input across
models: (1) 0.262 (labor), 0.173 (land), 0.133 (livestock
capital), 0.088 (machinery capital), 0.175 (fertilizers), 0.136
(animal feed) in CSS model; (2) 0.243 (labor), 0.193 (land),
0.143 (livestock capital), 0.099 (machinery capital), 0.168
(fertilizers), 0.131 (animal feed) in KSS model; and (3)
0.252 (labor), 0.183 (land), 0.138 (livestock capital), 0.094
(machinery capital), 0.171 (fertilizers), 0.133 (animal feed)
in model averaging CSS & KSS model. Therefore, output
elasticities are robust in various models. Moreover, during
the sample period, the factor shares of labor, land, livestock
capital, machinery capital, fertilizers, and animal feed
reported in USDA-ERS are 0.317, 0.208, 0.131, 0.091,
0.135, and 0.120, respectively, which are consistent with
our estimations.7

Table 4 presents country-level technical efficiency esti-
mated by the CSS, KSS, and jackknife averaging CSS &
KSS models. The average efficiency level of agricultural
production is 35%, which implies great potential to increase
agricultural output. Even without technical progress, the
global agricultural output can almost triple if all countries
can achieve the highest attainable productivity on the
frontier through efficiency improvement, which could sig-
nificantly contribute to sustainable development and pov-
erty reduction. Moreover, the distribution of technical
efficiency is right skewed as more than three-quarters of the
countries are less than half as efficient as the frontier
countries. One-quarter of these 126 countries have an effi-
ciency level of less than 21%; these are the least developed
countries with severe hunger and poverty. All of these facts
provide evidence of the great importance of agricultural
convergence if technological catch-up occurred in those

Table 1 Classification and distribution of countries in 2014

Classifications # of
nations

% of world
population

% of
world
agri-
output

Agricultural
output

Mean Median

All Countries 126 89.1% 90.4% 18.3 3.7

Geographical Regions

Sub-Saharan
Africa

34 11.2% 5.5% 4.2 2.2

Asia 22 51.4% 44.9% 52.3 8.3

WANA (N. Africa
& W. Asia)

17 6.3% 5.1% 7.7 3.2

South & Central
America

25 8.5% 12.7% 13.0 3.3

Europe 23 5.7% 9.1% 10.1 5.1

Developed Africa 1 0.7% 0.6% 14.1 14.1

North America 2 4.9% 11.0% 140.6 140.6

Oceania 2 0.4% 1.5% 19.4 19.4

Income Groups

Low-income 25 7.7% 3.3% 3.3 2.8

Lower Middle-
income

28 34.8% 23.0% 21.0 5.0

Upper Middle-
income

32 31.5% 36.9% 31.5 3.7

High-income 41 15.5% 24.8% 15.5 4.7

Development Groups

Less Developed 100 76.6% 69.1% 17.8 3.4

Developed 26 12.5% 21.0% 20.7 7.2

Trade Groups

Non-GATT/WTO
Members

15 5.0% 2.7% 4.6 1.8

GATT/WTO
Members

111 84.1% 87.7% 20.2 4.1

Agricultural Groups

Agriculture-based 36 10.7% 6.1% 4.3 2.8

Transforming 38 54.9% 47.0% 31.6 3.7

Urbanized 26 11.0% 16.0% 16.3 4.1

The last two columns give mean and median value of agricultural
output in billion international dollars at 2005 constant price,
respectively

7 https://www.ers.usda.gov/data-products/international-agricultural-
productivity/
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least efficient countries. Otherwise, the world will face more
challenges between the growing population and food scar-
city if agricultural divergence is observed.

Table 5 reports the change of technical efficiency
between 1970 and 2014 for various groups. To summarize,
different groups in different classifications reflect different
efficiency trends for the period from 1970–2014. Significant
efficiency decrease is witnessed in lagging groups, such as
low-income, less developed, agriculture-based, and African
countries, whereas efficiency increase is observed in more
advanced groups, such as high-income, developed, urba-
nized and European countries. Overall, the gap between
advanced and lagging groups is enlarged during the last five
decades.

4.2 Tests for σ-convergence

Table 6 reports the estimation results of σ-convergence tests
for all countries and for various groups of countries. It is
worth noting that each row presents the results for one
regression where variance in efficiency is the dependent
variable and time trend is the independent variable. This
article finds no evidence of world agricultural convergence
using a σ-convergence test. In contrast, the first row in
Table 6 implies larger efficiency dispersion over time,
which indicates agricultural divergence.

The results of σ-convergence in Table 6 show that agri-
cultural convergence occurred within lagging regions, such
as low-income, less developed, agriculture-based, and
African countries, respectively. This implies that the coun-
tries are getting closer to group-specific frontier countries. A
possible explanation of these findings is that technology
sharing and access are only available within the same group
and are limited from the advanced countries.

On the contrary, the advanced groups, such as developed
countries, and urbanized countries, experienced divergence

during the same period, indicating larger gaps across coun-
tries within the same group. In other words, some countries
are more efficient, whereas others are less efficient. This may
be less problematic, for example, for urbanized countries
since agriculture may account for a relatively small portion
of their GDP. Food insecurity and mass poverty won’t
happen as long as their productivity and efficiency in non-
agricultural sectors are high and the international trade of
agricultural products remains unobstructed.

4.3 Tests for unconditional β-convergence

Table 7 presents the estimation results of the unconditional
β-convergence tests under various classifications, which
links the efficiency growth to the efficiency level of the
countries that were ignored in the σ-convergence tests. For
all 126 of the countries, the unconditional β-convergence
test also rejects world agricultural convergence. Moreover,
this article finds unconditional β-divergence, which implies
that more efficient countries grow faster than less efficient
countries.

The results of unconditional β-convergence tests under
different classifications are fairly consistent with the find-
ings in σ-convergence tests. Advanced economies, such as
developed countries and urbanized countries, experienced
agricultural divergence. Agricultural convergence, on the
other hand, is witnessed among lagging economies, such as
Sub-Saharan African countries, low-income countries, less
developed countries, and agriculture-based countries, which
indicates that less efficient nations grow faster within each
of these groups.

4.4 Tests for conditional β-convergence

The final question this article aims to answer is whether all
countries can converge to a single point in the future?

Table 2 Summary statistics
Variable Name Notation Unit Mean St. Dev. Min Max

Agricultural output Y Billion international $ 11.2 37.4 0.0 590

Agricultural land land Million hectares 13.6 40.9 0.0 316

Agricultural labor labor Million active adults 7.3 34.3 0.0 391

Livestock capital livestock Thousand cattle equivalents 15.8 45.2 0.0 415

Farm machinery machine Million tractor equivalents 0.2 0.7 0.0 12.0

Fertilizer consumption fertilizer Million metric tons 0.9 3.6 0.0 51

Animal feed feed Million metric tons 7.3 24.6 0.0 370

Agricultural trade trade Billion dollars 6.9 18.0 0.0 273

Share of cropland cropland % 79 19 0 100

Share of irrigated land irrig % 12 13 0 71

Share of livestock livestock % 40 23 0 99

Per capita arable land land_pc Hectare 0.41 0.61 0.00 6.70

Per capita agri output agri_pc Thousand international $ 0.31 0.29 0.00 2.67
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Tables 8 and 9 report the estimation results of the condi-
tional β-convergence tests. When other variables are held
constant, β-convergence is witnessed for world agricultural
production, indicating that it is possible to achieve global
convergence. Moreover, among all the 16 groups under
different classifications, 11 groups achieved conditional
within-group convergence, 2 groups suffered from

conditional within-group divergence, and the remaining 2
groups experienced neither convergence nor divergence.

This article is also interested in the role of other growth
drivers on convergence. By comparing the coefficients of
lagged efficiency in the unconditional convergence analysis
(Table 7) with the ones in the conditional convergence
analysis (Tables 8 and 9), we can test if considering these

Table 3 Estimation results of the
stochastic frontier models

CSS Model KSS Model

Coefficient Standard Error Coefficient Standard Error

(1) (2) (3) (4)

labor 0.818*** (0.029) 0.735*** (0.030)

land −0.561*** (0.043) −0.355*** (0.043)

livestock 0.588*** (0.030) 0.456*** (0.030)

fertilizer 0.294*** (0.022) 0.341*** (0.022)

machine −0.174*** (0.026) −0.317*** (0.025)

feed −0.225*** (0.022) −0.074*** (0.021)

labor× labor 0.009** (0.004) 0.009** (0.004)

labor× land 0.107*** (0.007) 0.109*** (0.007)

labor× livestock −0.111*** (0.007) −0.110*** (0.007)

labor× fertilizer 0.010** (0.004) 0.006 (0.005)

labor×machine 0.003 (0.005) 0.004 (0.005)

labor× feed −0.061*** (0.005) −0.055*** (0.005)

land × land 0.025*** (0.008) 0.020** (0.008)

land × livestock −0.097*** (0.010) −0.092*** (0.011)

land × fertilizer −0.005 (0.007) 0.007 (0.007)

land ×machine −0.046*** (0.006) −0.050*** (0.006)

land × feed 0.060*** (0.007) 0.043*** (0.007)

livestock× livestock 0.094*** (0.006) 0.094*** (0.006)

livestock× fertilizer −0.024*** (0.005) −0.030*** (0.005)

livestock×machine 0.064*** (0.006) 0.066*** (0.006)

livestock× feed −0.055*** (0.006) −0.047*** (0.006)

fertilizer× fertilizer 0.019*** (0.003) 0.020*** (0.003)

fertilizer×machine −0.011*** (0.004) −0.013*** (0.004)

fertilizer× feed −0.025*** (0.003) −0.030*** (0.003)

machine×machine −0.015*** (0.002) −0.018*** (0.002)

machine× feed 0.034*** (0.004) 0.052*** (0.004)

feed × feed 0.029*** (0.003) 0.021*** (0.003)

t −0.024*** (0.002) −0.019*** (0.002)

t× t 0.0001*** (0.0000) 0.0001*** (0.0000)

t× labor −0.0001 (0.0004) −0.0004 (0.0004)

t× land 0.002*** (0.0005) 0.001*** (0.0005)

t× livestock −0.002*** (0.0004) −0.0005 (0.0004)

t× fertilizer 0.003*** (0.0003) 0.003*** (0.0003)

t×machine −0.002*** (0.0003) −0.002*** (0.0003)

t × feed 0.001*** (0.0003) 0.00004 (0.0003)

constant term 7.948*** (0.084) 7.036*** (0.077)

jackknife w�
m 0.489 0.511

Standard errors are given in parentheses

Asterisks *, **, and *** denote significance at the 1%, 5%, and 10% levels, respectively
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growth drivers have contributed to world agricultural con-
vergence. In full sample analysis, the coefficient changed
from positive in the unconditional test to negative in the
conditional test, indicating openness to trade and other
factors controlled contributed to world agricultural con-
vergence. Among all the 16 comparisons at group level,
75% (12/16) of the results indicate that openness to trade
and other factors contributed to within-group convergence.

The results of the conditional β-convergence tests also
indicate how to improve efficiency and accelerate con-
vergence in different countries in the future. Overall, the
total volume of international trade, share of cropland in total
agricultural land, and share of irrigated land have

significantly positive, although different, effects on agri-
cultural efficiency in most groups. More specifically,
international trade is more important and has a greater
impact on efficiency improvement in the lagging countries,
whereas the effect is smaller in the leading countries. In
terms of cropland ratio, transforming, high-income, WANA
and GATT/WTO countries can benefit more from cropland
than other countries. Irrigation construction can also sig-
nificantly improve technical efficiency in most countries.
Livestock production is more efficient than crop production
in the leading countries (e.g., Europe, urbanized, high-
income, and developed countries) but crop production is
more efficient in the lagging countries (e.g., Sub-Saharan
Africa and lower middle-income countries), as the coeffi-
cient of livestockt−1 is significantly positive in the former
groups but significantly negative in the latter groups.

4.5 Robustness checks

The first concern is the reliability of technical efficiency
calculations. We check the robustness of the current Trans-
log SFA model by introducing two more models. On the
one hand, this article introduces technical efficiency calcu-
lated by the DEA method to see if the consistent con-
vergence results hold, which can relax fixed functional
forms in the SFA method. Some scholars (e.g., Kumar and
Russell (2002), Coelli and Rao (2005), and Henderson and
Russell (2005)) estimate efficiency using the DEA method
in agricultural convergence studies, which implements a
nonparametric representation of the frontier. This article
follows Deliktas and Balcilar (2005) and Headey et al.
(2010) by using the DEA as a confirmatory analysis to
supplement the results in the SFA. In the DEA model, the
efficiency is predicted by solving the following linear pro-
gramming equation:

Dit yit; xitð Þ ¼ min
θ;λ

θ; ð9Þ

s:t: � yit þ Yλ � 0; θxit þ Xλ � 0; λ � 0;

where Y accounts for the output matrix of yit, and X
accounts for the input matrix of xit. λ vectors a group of
constants. The efficiency score is measured by θ, which is
comparable to the one derived from the SFA models. On the
other hand, the true DGP remains unobserved, making it
difficult for a single method to explain the agricultural
technical efficiency trend sufficiently for all countries.
Taking the complexity of the true DGP in cross-country
agricultural production into account, this article therefore
adopts the Jackknife averaging modeling procedure as the
benchmark, which can assign weights based on the ability
of each candidate model to explain the sample data We also

Table 5 Technical efficiency and its changes by group

Classifications 1970 2014 Change

All Countries 0.381 0.355 −0.026

Geographical Regions

Sub-Saharan Africa 0.352 0.244 −0.108

South & Central America 0.347 0.339 −0.008

Asia 0.288 0.289 0.001

WANA (W. Asia & N. Africa) 0.396 0.428 0.032

Europe 0.516 0.513 −0.003

Income Groups

Low-income 0.313 0.213 −0.100

Lower Middle-income 0.282 0.271 −0.011

Upper Middle-income 0.344 0.363 0.019

High-income 0.518 0.501 −0.017

Development Groups

Less Developed 0.349 0.309 −0.040

Developed 0.537 0.554 0.017

Trade Groups

Non-GATT/WTO Members 0.327 0.308 −0.019

GATT/WTO Members 0.423 0.362 −0.061

Agricultural Groups

Agriculture-based 0.334 0.247 −0.087

Transforming 0.318 0.325 0.007

Urbanized 0.369 0.379 0.010

Table 4 Technical efficiency statistics

CSS Model KSS Model Jackknife Average
Model

(1) (2) (3)

Mean 0.37 0.34 0.35

Minimum 0.10 0.09 0.10

25% quantile 0.22 0.20 0.21

50% quantile 0.31 0.28 0.29

75% quantile 0.48 0.44 0.46

Maximum 1.00 1.00 1.00
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employ the CSS and KSS technical efficiency scores to test
the robustness of the baseline estimates.

Table 10 compares the convergence results using tech-
nical efficiency scores calculated by different models. The
first four columns in Table 2 present the results of σ-
convergence tests with the TE scores of different models.
For all countries, all the three additional convergence tests
deliver consistent results with our main model using SFA
technical efficiency scores. In the heterogeneity analysis,
the proportion of the three robust convergence results that
are consistent with the main model is more than 85%.
Columns (5)–(8) show the results of the unconditional β-
convergence tests. For all countries, the convergence
results based on TE scores of CSS, KSS and DEA
methods deliver consistent conclusion that unconditional
β-convergence has not occurred for all countries. Among
the seventeen comparisons, the proportions of results
from additional analysis that are consistent with the main
model is over 75%. Columns (9)–(12) show that condi-
tional β-convergence in agricultural technical efficiency is
witnessed in all countries with different TE scores cal-
culation methods. Among the seventeen comparisons,
more than 90% of them show the same result. As a result,

the additional analysis confirms the robustness of our
baseline estimates.

The second concern is the quality of the USDA-ERS
datasets. Although there are some defects in the USDA-
ERS data, it may still be difficult to replace (Villoria 2019).
The main reasons are as follows: first, although developed
countries such as the United States and Australia have better
databases, there is a lack of comparable data for developing
countries. Second, the statistical standards of different
countries are varied, which may produce additional errors in
the merge of data. In order to address the possible problems
posed by using the USDA-ERS data, we conduct a
robustness check on the main regression results using the
agricultural value-added data for each country from
1970–2018 provided by United Nations (UN)8, which has
been widely used in studies related to agriculture pro-
ductivity, such as Gollin et al. (2014). This article estab-
lishes a value-added production function for world

Table 6 Estimation results of σ-
convergence tests

Classifications Time Trend Intercept Conclusion

coefficient SE coefficient SE

All Countries 0.0014*** (0.000) −2.332*** (0.385) Divergence

Geographical Regions

Sub-Saharan Africa −0.0014*** (0.000) 3.043*** (0.223) Convergence

South & Central America 0.0012*** (0.000) −2.366*** (0.254) Divergence

Asia 0.0005*** (0.000) −0.843*** (0.243) Divergence

WANA (W. Asia & N. Africa) −0.0029*** (0.000) 6.114*** (0.408) Convergence

Europe −0.00004 (0.000) 0.260 (0.243) Neither

Income Groups

Low-income −0.0021*** (0.000) 4.438*** (0.009) Convergence

Lower Middle-income 0.0014*** (0.000) −2.635*** (0.220) Divergence

Upper Middle-income −0.0005*** (0.000) 1.220*** (0.290) Convergence

High-income −0.0001 (0.000) 0.413 (0.490) Neither

Development Groups

Less Developed −0.0001* (0.000) −0.010** (0.119) Convergence

Developed 0.0002** (0.000) −0.274 (0.208) Divergence

Trade Groups

Non-GATT/WTO Members 0.0016*** (0.000) −2.847*** (0.378) Divergence

GATT/WTO Members 0.0007*** (0.000) −1.181*** (0.216) Divergence

Agricultural Groups

Agriculture-based −0.0015*** (0.000) 3.184*** (0.236) Convergence

Transforming 0.0010*** (0.000) −1.662*** (0.178) Divergence

Urbanized 0.0013*** (0.000) −2.552*** (0.257) Divergence

Standard errors are given in parentheses

Asterisks *, **, and *** denote significance at the 1%, 5%, and 10% levels, respectively

8 UN data do not include complete data for Democratic Republic of
Congo and Ethiopia. Therefore, we use a panel data for 124 countries
from 1970-2014 to estimate technical efficiency and test convergence.
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agricultural sector in the form:

Value addedit ¼ αt þ
XK
k¼1

βkxkit þ 0:5
XK
m¼1

XK
n¼1

βmnxnitx
m
it � uit þ νit

ð10Þ

where Valueddedit accounts for the agricultural value-added
of country i at time t in logarithms, and xki measures the k-th
input of country i at time t in logarithms. Compared to the
input choice in Eq. (2), we don’t include the intermediate
input variables, such as animal feed and fertilizer, as
suggested in literature.

Thirdly, the technical efficiency in agriculture from year-
to-year data may be violated in responding to some transi-
tory shocks. Following Barro and Sala-I-Martin (1991) and
Wang et al. (2019), this article uses the average rate of
technical efficiency growth (TFP growth rate in their model)
over the interval T (3 years and 5 years, respectively) to
calculate σ-convergence test, unconditional β-convergence
test and conditional β-convergence test.

Table 11 compares the convergence results between the
year-to-year analysis and the period-to-period analysis
using the USDA-ERS data, as well as the ones using the UN

data. The first four columns in Table 11 present the results
of σ-convergence tests. For all the countries, the σ-con-
vergence tests’ results in our main model are consistent with
those considering 3-year average and those using the UN
value-added data9. Columns (5)–(8) show the results of the
unconditional β-convergence tests. For all countries, the
results of the unconditional β-convergence tests considering
3-year lag or using the value-added data are consistent with
our main model. The unconditional β-convergence tests
with 5-year lag are inconsistent with our main model
because of the small sample size. Among the seventeen
comparisons, the proportion of results that are consistent
with the data set corresponding to the main model is nearly
75%. Columns (9)–(12) show that the conditional β-con-
vergence in agricultural technical efficiency is witnessed in
all countries with different data settings. Among the
seventeen comparisons, more than 90% of them show the
same result, which confirms the robustness of our baseline
results.

Table 7 Estimation results of
unconditional β-
convergence tests

Classifications Lagged Efficiency Intercept Conclusion

coefficient SE coefficient SE

All Countries 0.033*** (0.004) −0.034*** (0.016) Divergence

Geographical Regions

Sub-Saharan Africa −2.497*** (0.081) 0.357*** (0.025) Convergence

South & Central America 1.187*** (0.164) −0.378*** (0.052) Divergence

Asia 0.209* (0.120) −0.009 (0.033) Divergence

WANA (W. Asia & N. Africa) 0.272*** (0.089) 0.084** (0.040) Divergence

Europe 0.371*** (0.083) −0.144** (0.045) Divergence

Income Groups

Low-income −2.169*** (0.074) 0.272*** (0.021) Convergence

Lower Middle-income 0.207 (0.202) −0.064** (0.031) Neither

Upper Middle-income −0.096 (0.108) 0.045 (0.039) Neither

High-income 0.287*** (0.082) −0.050 (0.043) Divergence

Development Groups

Less Developed −0.309*** (0.054) 0.029 (0.018) Convergence

Developed 0.253*** (0.087) −0.084* (0.049) Divergence

Trade Groups

Non-GATT/WTO Members −0.929*** (0.102) 0.120*** (0.033) Convergence

GATT/WTO Members 0.113*** (0.044) −0.047*** (0.018) Divergence

Agricultural Groups

Agriculture-based −2.713*** (0.090) 0.452*** (0.028) Convergence

Transforming 0.076 (0.076) 0.006 (0.026) Neither

Urbanized 0.885*** (0.109) −0.271*** (0.040) Divergence

Standard errors are given in parentheses

Asterisks *, **, and *** denote significance at the 1%, 5%, and 10% levels, respectively

9 Many estimates using 5-year average data are insignificant due to
small sample size, which leads to the conclusion of neither con-
vergence nor divergence and the notation “N” in Table 11.
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4.6 Discussion and Policy Implication

On the one hand, convergence is achieved for lagging
country groups, such as Sub-Saharan African countries,
low-income countries, less developed countries, and
agriculture-based countries, in all σ-convergence and β-
convergence tests. This indicates that the gap within each
group is decreasing and seems to be a good signal of catch-
up. However, these lagging country groups all witnessed a
significant decrease in average efficiency in Table 5, which
implies that they are even further behind advanced countries
now than they were in 1970. Taking both findings into
consideration, the leaders in these lagging country groups
are less efficient, which diminishes the within-group gap,

but extends the cross-group gap. To summarize, the once
most-promising countries in the lagging groups fail to catch
up and the gap between lagging countries and advanced
countries is enlarged. On the other hand, advanced country
groups, such as developed countries, raised average effi-
ciency and therefore converged. However, σ-divergence and
unconditional β-divergence are also observed in these
groups. These findings together imply that more countries
are catching up to the frontier, whereas the rest of them are
falling behind in these advanced groups. To empirically
verify this hypothesis, we reference the method used by Jin
et al. (2010) to measure technological progress of the two
groups (developed countries and developing countries). The
results show that the average annual growth rates of

Table 10 Robustness checks for
various efficiency models

Classifications σ-convergence tests Unconditional
β-convergence tests

Conditional
β-convergence tests

Main CSS KSS DEA Main CSS KSS DEA Main CSS KSS DEA

All Countries D D D D D N D D C C C C

Geographical Regions

Sub-Saharan
Africa

C C C C C C C C C C C C

LAC America D D D C D D D D D D N C

Asia D D D N D N N N C C C C

WANA C C C C D D D N C C D C

Europe N N N N D D D D N N N C

Income Groups

Low-income C C C C C C C C C C C C

Lower Middle-
income

D D D D N D N N C C C C

Upper Middle-
income

C C C C N N N N N N N C

High-income N N N N D D N D C C C C

Development Groups

Less Developed C N C C C C C C C C C C

Developed D N D N D D N N N N N N

Trade Groups

Non-GATT/
WTO Members

D D D D C C C C C C C C

GATT/WTO
Members

D D D D D D N C C C C C

Agricultural Groups

Agriculture-
based

C C C C C C C C C C C C

Transforming D D D C N N N C C C C C

Urbanized D D D D D D D D D D D D

# of Consistent
Results

– 15/17 17/17 13/17 – 14/17 13/17 12/17 – 17/17 15/17 14/17

D represents divergence, C represents convergence, and N represents neither of the two. The underscored
results are inconsistent with the ones of the main model. The last row presents consistent results of the
corresponding model with the main model among the seventeen comparisons
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technological progress are 1.268 and 1.136% for developed
countries and less developed countries, respectively, which
supports these aforementioned conclusions.

Another interesting finding is that many groups achieve
convergence only after other variables are controlled in the
conditional β-convergence test, which implies that the
agricultural efficiency gap can diminish in the ideal state
when all other things are equal. Therefore, agricultural
catch-up can be obtained if the lagging countries can
improve irrigation system, international trade, and optimize
crop-livestock structure based on relative advantages. This
is of great significance to sustainable development and
poverty reduction on a global scale. However, countries
with lower agricultural efficiency may not be able to
improve their level of relevant efficiency determinants by
themselves and will therefore fail to diminish the efficiency

gap. Hence, support from other countries and related
organizations are necessary to achieve convergence.

Finally, we find that the “within-group” efficiency
divergence in rich countries is mainly due to the faster
technological process, whereas the “within-group” effi-
ciency convergence in poor countries is the result of slow
growth in its frontier country. Therefore, technology
transfers and spillovers from rich countries to poor countries
are very important to accelerate the growth in the frontier of
the poor countries.

5 Conclusion

The aim of this article is to answer two questions: Has
world agricultural convergence occurred? If not, how can

Table 11 Robustness checks for various data settings

Classifications σ-convergence tests Unconditional β-convergence tests Conditional β-convergence tests

Main 3-year
average

5-year
average

UN
Data

Main 3-year
average

5-year
average

UN
Data

Main 3-year
average

5-year
average

UN
Data

All Countries D D D D D D N D C C C C

Geographical Regions

Sub-Saharan Africa C N N C C C C C C C C C

LAC America D D D D D D N D D N N D

Asia D N N D D D D N C C C C

WANA C C N N D D D D C C C C

Europe N N N N D D D D N N N N

Income Groups

Low-income C C C C C C C C C C C C

Lower Middle-
income

D D N D N N N N C C C C

Upper Middle-
income

C C C C N N N N N C C N

High-income N N N N D N N N C C C C

Development Groups

Less Developed C N N N C C C C C C C C

Developed D N D D D N D D N N N N

Trade Groups

Non-GATT/WTO
Members

D D N D C C C C C C C C

GATT/WTO
Members

D D N D D D N D C C C C

Agricultural Groups

Agriculture-based C C N C C C C C C C C C

Transforming D N N D N C C D C C C N

Urbanized D D D D D D D D D D D D

# of Consistent
Results

– 12/17 8/17 15/17 – 14/17 12/17 14/17 – 15/17 15/17 16/17

D represents divergence, C represents convergence, and N represents neither of the two. The underscored results are inconsistent with the ones of
the main model. The last row presents consistent results of the corresponding data settings with the main model among the seventeen comparisons
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this goal be fulfilled? Existing studies find that the SFA
method is better than the DEA method in studying world
agricultural catch-up, since it can capture the random noise
and measurement error. However, the classic SFA estimator
cannot capture the non-monotonic trend of technical effi-
ciency. This article uses both CSS and KSS models to
estimate more accurate country-level technical efficiency in
agriculture. Three convergence tests are then employed to
answer the two aforementioned questions. To our knowl-
edge, this is the first study that employs the model aver-
aging method to investigate world agricultural convergence.
Compared with existing studies, this article also analyzes
regional agricultural convergence and the potential
approaches to improve agricultural efficiency and accelerate
technological catch-up in different countries.

Using a balanced panel of 126 countries for the period
from 1970–2014, this article finds that the global average
technical efficiency is 0.35, indicating the potential to
increase agricultural output and the importance of agri-
cultural convergence. Unconditional measures of con-
vergence show all countries fail to converge to a single
point. Moreover, it is possible for all countries to converge
to the same equilibrium based on the conditional con-
vergence test. This article finds that international trade and
irrigation system can help diminish the efficiency gap and
achieve agricultural catch-up in lagging countries.

This article further investigates a within-group single
steady state is achieved for different groups of countries.
Lagging countries groups, such as Sub-Sahara African
countries, low-income countries, less developed countries
and agriculture-based countries, achieved σ-convergence
and unconditional β-convergence, which implies that the
within-group gaps are diminishing over time. However, the
convergence is due to the slow development of the leaders
in these lagging groups, rather than the catch-up of the
laggards, since their gaps and distances toward the
advanced countries are enlarged. Moreover, the laggards in
the advanced country groups also witnessed decreasing
efficiency and therefore led to divergence within those
advanced groups. To summarize, the middling countries
suffered from stagnation, which is the major obstacle to
world agricultural convergence.

Moreover, we find that even after controlling country
differences in international trade, irrigation system and
structural transformation, a puzzlingly large gap remains
among advanced groups such as European countries, and
developed countries. Future studies can investigate how to
diminish this gap and how to solve the stagnation issue of
the middling countries. Moreover, this article uses widely
accepted classifications to do cluster convergence analysis,
such as by geographical location, income level, develop-
ment level, openness levels, and agricultural importance,
respectively. How to identify more rational agriculture-

based classification using other methods, such as club
convergence tests, is worth investigating in the future.
Finally, existing studies find negative impact of epidemics
on agricultural productivity (Gong et al. 2020), it is
necessary to evaluate the short-run and long-run effects of
COVID-19 on world agricultural convergence when rele-
vant data are available.
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