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A B S T R A C T

This paper investigates firm-level efficiency in the petroleum industry during the period 2009–2015. A Jackknife
model averaging method and two stochastic frontier models are utilized to estimate the input-output relation
more accurately. The derived efficiency is then decomposed to predict the effect of various efficiency de-
terminants with an emphasis on gas ratio and ownership. A significantly negative effect of natural gas ratio (in
production portfolio) on efficiency is found for both National Oil Companies (NOCs) and privately-owned
International Oil Companies (IOCs). This finding implies that the decline in natural gas ratio for IOCs is eco-
nomics-driven, and the incline in gas ratio for NOCs is environment-driven. Therefore, the environmental ob-
jective is the NOCs’ third non-commercial objective, alongside subsidizing below-market energy prices and of-
fering excessive employment, as found in the literature. Governments may consider the transfer of subsidies from
low energy prices to clean energy promotion, which leads to energy saving and emissions reduction.

1. Introduction

Given the severe pollution of coal and the slow growth of renewable
energy, an abundant production of natural gas guarantees the supply of
electricity under some requirements of emissions reduction, and hence
balances the sustainable development of environment and economy.
Therefore, coal and renewables are the competing sources of natural
gas from a consumers’ perspective. Many studies (Robinson et al., 2013;
Simsek and Simsek, 2013; Wei et al., 2010) analyze the characteristics
of these sources economically and environmentally. However, the
major competitor to natural gas, from a producers’ perspective, is crude
oil, as petroleum enterprises decide the share of oil and gas in their
production portfolio, which to some extent determines the supply of
natural gas. Since natural gas produces fewer emissions than crude oil
and coal, improving the share of gas production in petroleum industry
benefits the environment from two perspectives. On the one hand,
natural gas can be utilized to directly replace coal in electricity gen-
eration. On the other hand, gas is an alternative to oil in the trans-
portation sector, which causes up to 40% CO2 emission reductions
(Hekkert et al., 2005).

Using data on 54 large petroleum firms, this paper finds that the
average share of natural gas in portfolio decreased from 42.69% in
2009 to 40.96% in 2015, which implies that gas production might be

less effective than oil production. In order to prove that such a decline
in the gas ratio is economics-driven, the impact of natural gas share on
firm-level efficiency needs to be estimated. In the little research that
studies the efficiency of oil and gas firms, the focus is the difference
between National Oil Companies (NOCs) and privately-owned
International Oil Companies (IOCs) (i.e., the effect of ownership), and
no one has studied the impact of natural gas ratio. Hartley and Medlock
(2008) argue the major difference between IOCs and NOCs is that the
IOCs focus on a commercial objective, while the NOCs have a wider
range of non-commercial objectives due to political pressure. If the
decline in gas ratio is economics-driven, as we expected, a sharper fall
should be observed among IOCs, since they pay more attention to
economic performance. This paper finds that the gas ratio decreased
from 45.86% in 2009 to 42.18% in 2015 for IOCs, which further sup-
ports our hypothesis. However, an incline in gas ratio from 35.18% to
38.06% for NOCs is observed during the same period, which is either
the result of political pressure for environmental reasons or the dif-
ferent effects of gas ratio on IOCs and NOCs.

This paper aims to investigate the effect of gas ratio on firm-level
efficiency for large petroleum companies and to check whether this
effect is different in NOCs and IOCs. In the first step, this paper uses the
Jackknife model averaging method and two stochastic frontier analysis
(SFA) to estimate the input-output relation and derive firm-level

https://doi.org/10.1016/j.enpol.2017.12.004
Received 12 August 2017; Received in revised form 29 November 2017; Accepted 4 December 2017

E-mail address: gongbinlei@zju.edu.cn.
URL: http://person.zju.edu.cn/en/gbl.

Energy Policy 114 (2018) 145–152

Available online 22 December 2017
0301-4215/ © 2017 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03014215
https://www.elsevier.com/locate/enpol
https://doi.org/10.1016/j.enpol.2017.12.004
https://doi.org/10.1016/j.enpol.2017.12.004
mailto:gongbinlei@zju.edu.cn
http://person.zju.edu.cn/en/gbl
https://doi.org/10.1016/j.enpol.2017.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enpol.2017.12.004&domain=pdf


efficiency, the robustness of which is checked using a data envelopment
analysis (DEA) and the adjustment of input categories. Then, the effi-
ciency scores are decomposed using an efficiency determination equa-
tion to predict the effect of gas ratio for NOCs and IOCs. The potential
endogeneity problems in both SFA and efficiency decomposition are
carefully checked and addressed.

There are three central contributions of this paper to the studies of
the petroleum industry: 1) the stochastic frontier models used allow
non-monotonic time-varying efficiency, which better captures the
fluctuations in economy than the frontier models used in the literature;
2) a model averaging method is introduced to combine the advantages
of paramedic and semi-parametric estimation of efficiency; and 3) to
our knowledge, this is the first study to estimate the efficiency of pet-
roleum companies after the financial crisis, and the first to address the
effect of gas ratio. Moreover, the empirical results show that the effect
of gas ratio on efficiency is significantly negative and indifferent be-
tween IOCs and NOCs, which implies the decline in gas ratio for IOCs is
economics-driven, and the incline in gas ratio for NOCs is environment-
driven. This paper suggests governments replacing price subsidy with
clean energy promotion, which leads to energy saving and emissions
reduction.

The remainder of the paper is structured as follows. Section 2 re-
views related literature. Section 3 introduces the model. Section 4 de-
scribes the data employed. Empirical results are presented and policy
implications are given in Section 5. Section 6 draws a conclusion.

2. Literature review

Although the petroleum industry is an important market in the
world, very little research to date has studied the productivity and ef-
ficiency of oil and gas companies (Eller et al., 2011; Hartley and
Medlock III, 2013; Wolf, 2009). Al-Obaidan and Scully (1992) use both
deterministic and stochastic frontier analysis (SFA) on cross-sectional
data of 44 oil and gas companies to estimate the efficiency. They use
assets as the capital input, number of employees as the labor input, and
either revenue or physical products as the output to estimate firm-level
efficiency, and find NOCs are less efficient than IOCs. Thompson et al.
(1996) study the efficiency of 14 major petroleum enterprises in the
U.S. oilfield market, using a non-parametric DEA for the period
1980–1991. Gong (2017) introduces spatial techniques into the pro-
duction function to capture the interactions among oil and gas service
companies and then derive total factor productivity (TFP). Gong (2018)
evaluates the impacts of new shale techniques (hydraulic fracturing and
directional drilling) on SFA-derived firm-level efficiency in the global
oilfield service industry. It is worth noting that the last three papers
study oilfield service firms rather than petroleum enterprises.

Instead of using firm-level data, Managi et al. (2004) analyze the
productivity and efficiency of the offshore Gulf of Mexico oil and gas
industry, using well-level and field-level data in a DEA model. A similar
dataset is utilized by the same group of scholars in Managi et al. (2006),
who adopt a SFA model with the Battese-Coelli (BC) estimator so that
time-varying efficiency can be derived. In these two studies, quantities
of oil and gas production are used as output variables.

Hartley and Medlock (2008) provide three reasons to use revenue
rather than production as output to estimate firm-level efficiency.
Firstly, physical output such as oil and gas produced may fail to catch
the impact of subsidies (e.g., a lower domestic price) as the result of
political pressure on NOCs. Secondly, a usual method to aggregate the
multiple products (e.g., oil and gas) is to calculate their relative value at
market prices. Thirdly, revenue figures are usually easier to collect than
the quantities of various products. Empirically, Wolf (2009) shows the
strong correlation between physical outputs and revenue in oil and gas
companies. Recent literature (Eller et al., 2011; Hartley and Medlock
III, 2013) prefers to use revenue as the output in estimating the effi-
ciency of the oil and gas companies.

In terms of inputs employed for petroleum firms, Al-Obaidan and

Scully (1992) use only assets and number of employees. Wolf (2009)
adds the sum of oil and gas reserves as the third input to produce oil and
gas. Although total assets are kept as an input because they cover other
capital than the reserves, Wolf (2009) emphasizes that total assets re-
flect accounting rather than economic value, which might be severely
distorted by inflation. Therefore, Eller et al. (2011) remove total assets
from the input portfolio and further separate oil reserves and gas re-
serves as two different inputs. Finally, Hartley and Medlock III (2013)
add refining capacity as an input on the top of the input portfolio in
Eller et al. (2011). This paper follows Hartley and Medlock III (2013) by
including number of employees, oil reserves, gas reserves, and refining
capacity as the four inputs, since this avoids the distortion of total assets
mentioned in Wolf (2009), but considers the two most crucial assets
including reserves and refining capacity.

Besides inputs and outputs, the last important thing to be decided is
the econometrical method that captures the input-output relation. SFA
and DEA are the two most widely used methods to estimate firm-level
efficiency given inputs and outputs. SFA is a parametric method that
allows a stochastic term to control the noise, but requires assumption of
the functional form. DEA is a nonparametric linear programming
method that relaxes the rigid functional assumption but does not ac-
count for statistical noise. They are also the main competing models in
the efficiency analysis of the petroleum industry. As mentioned above,
Managi et al. (2004) and Managi et al. (2006) employ DEA and SFA to
study the offshore Gulf of Mexico oil and gas industry using the same
dataset, respectively. Moreover, both DEA and SFA are utilized in Eller
et al. (2011) and Hartley and Medlock III (2013). This paper uses dif-
ferent SFA models to estimate firm-level efficiency and a DEA model to
check its robustness.

However, the key interest in the literature is the effect of ownership
on efficiency. Hartley and Medlock (2008) present a model of NOCs and
find they have a wider range of non-commercial objectives, such as
domestic consumer surplus and employment. Political pressure forces
them to provide domestic subsidy by below-market energy prices and
excessive employment, which raises input-output ratio and reduces
efficiency. Many scholars (Al-Obaidan and Scully, 1992; Eller et al.,
2011; Hartley and Medlock III, 2013; Wolf, 2009) study the difference
between NOCs and IOCs, and find that the former group is less efficient
than the latter, empirically. Al-Obaidan and Scully (1992) find NOCs on
average are only 63–65% as efficient as IOCs. Wolf (2009) also claims
that NOCs are 20–30% less efficient than private oil companies. Eller
et al. (2011) and Hartley and Medlock III (2013) further introduce an
efficiency decomposition equation as a second-step regression after SFA
or DEA, aiming to estimate the effect of ownership when other things
are equal. Both these studies find a significantly lower efficiency level
of NOCs than IOCs. This paper also decomposes efficiency to predict the
impact of efficiency determinants more accurately, but with an em-
phasis on natural gas ratio instead of ownership.

3. Methodology

3.1. Efficiency Measurements

The main approach used by this paper to measure efficiency is
stochastic frontier analysis, which was initially proposed by Aigner
et al. (1977) and Meeusen and Van den Broeck (1977). Given cross-
sectional data, a stochastic frontier production function model equals
the deterministic frontier production function plus a symmetric random
error variable in the form

= ∙ ∙Y f X ν( ) TE exp ( ),i i i i (1)

where Yi is the output of firm i, and Xi is the vector of inputs and other
regressors. ∙f ( ) is the function that decides the frontier, which provides
the highest attainable output given inputs. TEi measures the technical
efficiency from 0% to 100%. νi is the stochastic part that accounts for
measurement errors, which is typically assumed to follow a normal
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distribution. Assuming Cobb-Douglas form of the production function
∙f ( ) and taking the log of Eq. (1) gives the form

= ′ − +y x β u ν ,i i i i (2)

where yi is the output of firm i in logarithms, xi is a vector of inputs and
other regressors in logarithms, and = −u log (TE )i i is a non-negative
random variable since < ≤0 TE 1i . The efficiency can be derived by

= −uTE exp ( )i i .
Schmidt and Sickles (1984) propose a stochastic frontier model

under a panel data setting when efficiency is assumed to be fixed over
time.

= + ′ − + = + ′ +y α x β u ν α x β ν ,it it i it i it it (3)

Then fixed effects or random effects methods can be used to esti-
mate αi under different conditions, since Eq. (3) is the standard form of
the panel data model.

However, the efficiency of a company, or the distance between its
actual production and the industry's best practice, is likely to vary
across time. Therefore, some scholars have developed new methods to
allow a time-variant efficiency in the form

= + ′ − + = + ′ +y α x β u ν α x β ν .it it it it it it it (4)

Based on Eq. (4), Battese and Coelli (1992) propose the error
components specification with time-varying efficiencies

= − − ∙u η t T uexp ( ( )) ,it i (5)

where +u N μ σ~ ( , )it μ
2 is a truncated normal distribution. However, the BC

estimator has a monotonicity constraint on efficiency. If η is positive, uit
is increasing over time for every firm i, which refers to decreasing ef-
ficiency over time. Similarly, negative η and zero η can lead to in-
creasing efficiency and fixed efficiency for all firms, respectively.
Moreover, the efficiency changes at the same speed across firms and
time, as the change rate −ηexp ( ) is firm-invariant and time-invariant.
As a result, this model applies to periods with stable micro and mac-
roeconomic environment, such as the period 2002–2004 in Eller et al.
(2011) and most of the period 2001–2009 in Hartley and Medlock III
(2013).

This paper studies efficiency changes over the period 2009–2015,
during which the petroleum industry gradually gained momentum after
the 2007–2009 financial crisis, then experienced another price crash in
2014. The BC estimator may fail to describe both the up and down of
the market due to the monotonicity restriction. Hence, this paper in-
troduces two other SFA models that can better capture the non-mono-
tonic fluctuations in the economy that affect efficiency.

Cornwell et al. (1990) propose a quadratic time-varying intercept of
all firms on the basis of Eq. (4)

= + +α θ θ t θ t ,it i i i1 2 3
2 (6)

where the quadratic function of time can catch the fluctuation in effi-
ciency affected by business cycles. This Cornwell-Schmidt-Sickles (CSS)
model can be solved by a within estimator, which is denoted as CSSW, if
the individual effects are assumed to be correlated with the exogenous
regressors. Otherwise, the Generalized Least Squares (GLS) estimator,
which is denoted as CSSG, is preferred. A Hausman-Wu test can be
adopted to choose between CSSW and CSSG.

Kneip et al. (2012) assume that firm-level efficiency is influenced by
a set of time-varying factors, and hence model it by a linear combina-
tion of some basis functions. More specifically, this Kneip-Sickles-Song
(KSS) model assumes the individual effects in Eq. (4) follow

∑=
=

u θ g t( ),it
r

L

ir r
1 (7)

where …g t g t( ), , ( )L1 are the basis functions, and …θ θ, ,i iL1 are the cor-
responding parameters. The KSS estimator is derived by semiparametric
techniques, which is more flexible than the parametric BC and CSS
estiamtors. In fact, the KSS model is a general setting that nests both BC

and CSS models. On the one hand, the BC model is a special case of KSS

when = − − ∑ − −
=

g t( ) exp( η(t T))/ exp ( η(t T))T s
T

1
1

1
2 and =L 1.

On the other hand, the CSS model can be nested in the KSS model when
the polynomial functions are the basis functions and =L 3.

Endogeneity can be an issue in the CSS and KSS models, since some
information witnessed by the petroleum enterprises that is employed in
their decision-making process is unobserved to scholars (Ackerberg
et al., 2015). Olley and Pakes (1996) and Levinsohn and Petrin (2003)
deal with the problem by using observed investment or intermediate
inputs to control for unobserved productivity shocks. Their approaches,
however, oftentimes suffer from the collinearity problems and hence
lead to in pausible results in empirical applications (Ackerberg et al.,
2015). This paper chooses the most widely used instrumental variables
(IV) method with the endogeneity concern. The control function
method introduced in Amsler et al. (2015) is adopted to check whether
the inputs are endogenous or exogenous, where input prices and lagged
input quantities, as suggested in Levinsohn and Petrin (2003) and Gong
(2018), are employed as instruments. If any input is confirmed to be
endogenous, the Corrected Two-Stage Least Square (C2SLS) method
recommended in Amsler et al. (2015) can be used to correct the bias.

3.2. Model averaging method

There is a tradeoff between the parametric CSS model and the
semiparametric KSS model. If the true data generating process (DGP) is
close to the assumption in the parametric model (i.e.,

= + +α θ θ t θ tit i i i1 2 3
2), the CSS estimator outperforms the KSS estimator.

However, the KSS estimator is preferred if the rigid assumption of the
functional form in CSS is invalid.

Since the true DGP is unobserved, a possible approach is to use some
model selection methods to choose between CSS and KSS models.
However, various model selection methods under different criteria1

may lead to different selection results. Even under the same criteria, a
slight change in data may lead to completely different selection. Fur-
thermore, all the candidate models, rather than only one of them, may
reflect the underlying DGP to some extent (Shang, 2015). Therefore,
model averaging methods that assign a weight to each candidate model
according to its ability to explain the data, rather than treating a single
model as the “best”, are better tools to approximate the underlying
mechanism and describe the true DGP. It is worth noting that model
selection is a special case of model averaging procedure, when all the
zero weight is assigned to all but one candidate models.

There are several weight-determination techniques in the literature.
The information criteria-based approach can be utilized in model
averaging method (Buckland et al., 1997). However, it is hard to test for
effectiveness and quality improvement. Hansen and Racine (2012)
propose a Jackknife-based model averaging method, which is asymp-
totically optimal and approaches the minimum expected square errors
when the sample size approaches infinity. Substantially, the Jackknife
method assigns weights based on the “leave-one-out” cross-validation
criterion.

This paper first derives the “leave-one-out” cross-validation for CSS
and KSS, respectively. The Jackknife estimators of the output

= …y y yˆ ( ˆ , , ˆ )n
CSS

1
CSS CSS and = …y y yˆ ( ˆ , , ˆ )n

KSS
1
KSS KSS are predicted, where ŷi

CSS

and ŷi
KSS are the fitted value of company i's output using the CSS and

KSS method, respectively, when the i-th firm is deleted from the da-
taset. Suppose the weight for CSS is w, the weight for KSS is −w1 ac-
cordingly. The Jackknife weight w* can be achieved by minimizing the
cross-validation criteria:

= = ′
≤ ≤

w CV w
n

e w e w* argmin ( ) 1 ˆ ( ) ˆ ( ),
w

n
0 1 (8)

1 Popular criteria include, but not limited to, the Akaike information criterion (AIC),
the Bayesian information criterion (BIC), and the Focused information criterion (FIC).
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where = − − −e w y wy w yˆ ( ) ˆ (1 ) ˆCSS KSS.
Then, the model averaging stochastic frontier model this paper

adopted has the form:

= + −y w*y (1 w*) y ,CSS KSS (9)

where yCSS is the CSS estimator follows Eqs. (4) and (6), and yKSS is KSS
estimator follows Eqs. (4) and (7). The intercept, coefficients, and ef-
ficiency terms are all the Jackknife-weighted average of the CSS and
KSS estimators.

3.3. Robustness checks

This paper checks the robustness of the efficiency estimates and the
model averaging method in the petroleum dataset. ′xit in Eq. (4) vector
inputs of the oil companies including number of employees, oil re-
serves, gas reserves, and refining capacity, as well as other repressors
including oil price realization and gas price realization, which is de-
noted as a “four-input model.” In the first robustness check, this paper
follows Wolf (2009) to treat total reserves in million barrels of oil
equivalent (BOE) as an input, which measures the overall resources
held by a company. Replacing the oil and gas reserves with total re-
serves, the CSS and KSS estimators are re-estimated, followed by the
Jackknife model averaging method. The robustness of the efficiency
estimates and the model averaging weights can be tested using this
“three-input model.”

To this end, this paper uses stochastic frontier models. Although the
individual effects of the KSS approach are modeled semi-para-
metrically, the production frontier is assumed to follow a Cobb-Douglas
form. The aforementioned tradeoff between parametric and semi-
parametric individual effects in CSS and KSS models also applies to the
assumption of the production frontier. If the true input-output relation
in the petroleum industry is very different from the Cobb-Douglas form,
the efficiency estimated can be inaccurate. Implementing a nonpara-
metric representation of the frontier is another way to estimate effi-
ciency. The most widely used nonparametric approach is DEA, which is
the major competing methodology to SFA in efficiency analysis.

DEA is a linear programming method that is powerful and easy, and
imposes minimal assumptions on the boundary of the input require-
ments set, including piece-wise linearity and convexity. The efficiency
can be estimated by solving the linear programming problem:

=D y x θ( , ) min ,it it it
θ λ, (10)

+ ≥ + ≥ ≥y Yλ θx Xλ λs. t. – 0, 0, 0,it it

where λ is a vector of constants. Substantially, this linear program ra-
dially contracts the input vector of each company to a projected point
Xλ Yλ( , ), on the surface of the piece-wise linear isoquant that represents
the frontier. The efficiency score of firm i at time t is given by < ≤θ0 1,
which is comparable with those estimated in the SFA models.
Therefore, this paper utilizes this DEA model to check the robustness of
the efficiency derived from the weighted average of the CSS and KSS
estimators.

3.4. Decomposition of efficiency

This paper is interested in the effect of natural gas ratio in portfolio
on firm-level efficiency in the petroleum industry. Since the dependent
variable, the firm-level efficiency, is in percentage from 0% to 100%, a
Tobit regression model is introduced to estimate the efficiency de-
termination equation.

= + + + + + + +Eff α βgas ρnoc ηgas noc γseg δreg τyear ε .it it it it it it it t it

(11)

where Effit is the firm-level efficiency for firm i at time t, and gasit is the
ratio of natural gas in production that measures the share of crude oil
and natural gas in portfolio of a company (i.e., output share by

product). nocit is a dummy variable of the NOCs. Since different trends
of gasit between NOCs and IOCs are observed, this paper checks the
potential heterogeneous effects of gasit on efficiency for NOCs and IOCs
by adding an interaction term gas nocit it. Moreover, it is necessary to
control each company's output share by segment and output share by
region, as many energy companies are found to be multi-segment/
product firms (Hawdon, 2003; Jacobsen et al., 2006; Seeto et al., 2001)
or multi-region/national firms (Bertoldi et al., 2006; Bilgin, 2007;
Conway, 2013; Fontaine, 2011). segit is a vector that measures the
output share in each segment, respectively. regit is a vector that mea-
sures the output share in each region, respectively. yeart is a vector of
year dummy variables to control the time effects.

Endogeneity may also be an issue in the efficiency determination
equation due to omitted variable bias and simultaneity bias. On the one
hand, this paper adds some other efficiency determinants into Eq. (11)
besides the variables of gas ratio and ownership to check the omitted
variable bias. On the other hand, simultaneity bias is another concern
as some efficiency determinants may be conversely affected by effi-
ciency. For instance, more efficient companies are more successful and
are more likely to step into a new segment or region. As a result, effi-
ciency may affect output share by segment and by region. This paper
replaces all efficiency determinants in Eq. (11) with their lagged values
to deal with the causality problem, which can also be treated as a ro-
bustness check.

4. Data

The primary data source is the Energy Intelligence's “Top 100:
Global NOC & IOC Rankings”. The variables required in SFA and DEA,
including firm-level revenue (in billion US dollars), number of em-
ployees, oil reserves (in million barrels, MMbbl), gas reserves (in bil-
lions cubic feet, Bcf), refining capacity (thousand barrels per day, ’000
b/d), oil price realization (US dollars per barrel of oil equivalent,
$/BOE), and gas realization (US dollars per thousand cubic feet,
$/Mcf), are all available in this dataset. This dataset also reports firm-
level oil production (in thousand barrels per day, ’000 b/d) and gas
production (in million cubic feet per day, MMcf/d), which can derive
the ratio of natural gas in production. Moreover, another efficiency
determinant of interest, the output share by segment, can be calculated,
since this dataset provides oil and gas produced in the upstream seg-
ment, oil and gas refined in the refining segment, and oil and gas sold in
marking segment. Finally, this dataset has firm category information to
separate NOCs and IOCs. The last set of efficiency determinants, output
share by region, are collected from Rystad Energy's UCube database,
where production from Asia-Pacific, Middle East, Africa, America,
Europe, and Russia is given for each company-year observation, re-
spectively.

Although Energy Intelligence's “Top 100: Global NOC & IOC
Rankings” include one hundred biggest oil companies in the world from
2009 to 2015, this paper drops firms with missing input or output in-
formation. A balanced panel data of 54 companies covering 2009–2015
remains, which is comparable with the sample of 44 petroleum en-
terprises for 1979–1982 in Al-Obaidan and Scully (1992), the sample of
14 integrated oil companies for the years 1980–1991 in Thompson et al.
(1996), the sample of 50 largest oil companies over the period
1987–2006 in Wolf (2009), the sample of 78 oil firms during the period
2002–2004 in Eller et al. (2011), and the sample of 61 oil companies
from 2001 to 2009 in Hartley and Medlock III (2013). Among these 54
companies, 16 are NOCs and 38 are IOCs.

Table 1 summarizes firm-level inputs and outputs, oil and gas price
realizations, and efficiency determinants in the years 2009 and 2015,
respectively. The average annual revenue of these oil companies de-
creased slightly from 55.73 billion to 55.25 billion US dollars in seven
years. Among the four inputs, only the oil reserves increased more than
one quarter, while the number of employees, the gas reserves, and the
refining capacity all decreased over the period 2009–2015. Due to the
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price crash since 2014, the average price realization of oil and gas in
2015 was 25.11% and 6.77% lower than the level of 2009, respectively.
The ratio of natural gas in oil companies’ portfolios on average de-
creased from 42.69% to 40.96%, indicating a smaller share of natural
gas in the total production of the large oil companies. The upstream
segment is the largest segment and keeps expanding, while refining and
marketing segments are smaller and diminishing, which shows the
behavior of the large oil companies in favor of the upstream business in
recent years. Geographically, more than 40% of the production of these
54 large oil companies is from America, and Asia-Pacific contributes to
one-fifth of their total production.

5. Results and discussion

5.1. Stochastic frontier and model averaging

Following Eller et al. (2011) and Hartley and Medlock III (2013),
this paper assumes that the production technology exhibits constant
returns to scale (CRS). The endogeneity of inputs in the production
function is tested and the result shows that all the inputs are exogenous.
As the first step, a Hausman-Wu test is employed to choose between the
CSSW and CSSG, which generates a p-value of 0.5018 in favor of the
CSSG model. In the first robustness check, when oil reserves and gas
reserves are aggregated as a single input, the Hausman-Wu test gen-
erates a p-value of 0.9695, which again suggests using the CSSG model.
Therefore, this paper uses CSSG and KSS to calculate the firm-level
efficiency of oil companies and then estimate the Jackknife model
averaging weights accordingly. Table 2 provides the estimation results
of the CSSG, KSS, and Jackknife-weighted average stochastic frontier
model. The first and third columns in Table 2 present the CSSG and KSS
estimator of the “four-input model”, respectively. Then, the fifth
column reports the Jackknife-weighted average stochastic frontier
model accordingly. The second, fourth, and sixth columns in Table 2
provide the estimation results of the “three-input model” as a robust-
ness check, which is comparable with the first, third, and fifth column,
respectively.

In Table 2, the Jackknife weight of CSSG is 0.2760 in the “four-
input” model, which implies both CSSG and KSS can explain the data-
generating process to some extent, but the semi-parametric KSS is more
important. The robustness of this conclusion is supported, as the
Jackknife weight of CSSG is 0.2161 in the “three-input” model. As a
result, the fifth column reports that the coefficients of labor, oil re-
serves, gas reserves, and refining capacity are 0.292, 0.164, 0.451, and
0.094, respectively, which are all significantly positive. The

contributions of labor and reserves are greater than that of the refining
capacity. Moreover, the oil price has a significantly positive effect on
output, while the effect of natural gas price is insignificant both sta-
tistically and economically. The results in the sixth column also confirm
the aforementioned findings on inputs and prices.

5.2. Firm-level efficiency

The stochastic frontier regressions in the fifth and sixth column of
Table 2 can further derive firm-level efficiency of the “four-input” and
“three-input” models, which are denoted as Eff SFA

1 and Eff SFA
2 , respec-

tively. As the second robustness check, this paper also uses DEA in the
“four-input” and “three-input” models to derive firm-level efficiencies,
which are denoted as Eff DEA

1 and Eff DEA
2 , respectively. Table 3 sum-

marizes the distribution of the efficiency scores in the international
petroleum industry under the four models. In summary, the efficiencies
estimated by the DEA model and the “four-input” model are slightly
higher.

In order to check the robustness of the efficiency estimated in the
main model (Eff SFA

1 ), this paper calculates the correlation of efficiencies
for the four models in Table 4. All the correlation coefficients in the
table are above 0.7, which implies a strong uphill (positive) linear re-
lationship across the efficiencies derived in the four models. Further-
more, Table 5 reports the estimation results of three Tobit regressions,
where Eff SFA

1 is the independent variable and the other three groups of
efficiencies (Eff DEA

1 , Eff SFA
2 , and Eff DEA

2 ) are the dependent variables,
one for each regression. The result also verifies the robustness of the
efficiency scores under different methods.

To this end, this paper estimates the production frontier and derives
firm-level efficiencies. The robustness of the firm-level efficiencies is
also confirmed using different methods (SFA vs. DEA) and input port-
folios (aggregate vs. disaggregate reserves). The fact that various ap-
proaches yield similar estimations should increase confidence that the
efficiencies reflect genuine underlying differences among petroleum
enterprises. This paper uses the robust efficiency estimated in the main
model (Eff SFA

1 ) for efficiency decomposition analysis.

5.3. Efficiency decomposition

The most important question this paper seeks to answer is whether
or not investing more in natural gas will decrease firm-level efficiency,
which reflects the economic impact of producing this clean energy; and,
moreover, whether or not this effect is different in NOCs and IOCs, as
the former have been increasing share of gas while the latter have re-
ducing share of gas in recent years. Finally, the impacts of the other two
sets of efficiency determinants, the output share by segment and by
region, can provide valuable information as well. Table 6 reports the
estimation results of the efficiency determination equation. Columns
(1)–(4) are estimations of the regular Tobit model where different sets
of independent variables are utilized to check the robustness of the
results. Column (5) presents the results of the full model in Eq. (11) to
avoid omitted variable bias. Column (6) replaces the independent
variables with their lagged values to deal with the simultaneous bias,
which has fairly robust results.

All the six columns in Table 6 report a significantly negative coef-
ficient of natural gas share in portfolio, indicating more investment in
this clean energy will lower firms’ efficiency. Therefore, the large oil
companies reduced the share of clean products in the context of en-
vironmental protection, because of economic and commercial concerns.
Another robust finding is that NOCs are significantly less efficient than
IOCs, holding other factors fixed. However, the magnitude of the dif-
ference between NOCs and IOCs is smaller than that found in the lit-
erature that uses earlier data.

The follow-up question, whether or not the effect of natural gas
share in portfolio is different for NOCs and IOCs, is answered by col-
umns (4)-(6) in Table 6, where insignificant estimates of the interaction

Table 1
Summary statistics.

Variable Explanation Unit 2009 2015 Changes

y Revenue billion $ 55.73 55.25 −0.86%
Labor Number of employees ’000 79.81 75.45 −5.46%
OilRsv Oil reserves MMbbl 7505 9472 26.21%
GasRsv Gas reserves Bcf 30401 29951 −1.48%
RefCap Refining Capacity ’000 b/d 915.2 832.5 −9.04%
OilPr Oil price realization $/BOE 54.24 40.62 −25.11%
GasPr Gas price realization $/Mcf 3.99 3.72 −6.77%
gas Ratio of natural gas in

portfolio
% 42.69 40.96 −4.05%

seg1 Share in upstream segment % 57.51 64.19 11.62%
seg2 Share in refining segment % 20.03 16.70 −16.63%
seg3 Share in marking segment % 22.46 19.12 −14.87%
reg1 Share in Asia-Pacific % 22.33 20.81 −6.81%
reg2 Share in Middle East % 4.86 6.56 34.98%
reg3 Share in Africa % 10.35 7.33 −29.18%
reg4 Share in America % 41.33 45.82 10.86%
reg5 Share in Europe % 8.41 6.39 −24.02%
reg6 Share in Russia % 12.72 13.09 2.91%
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term ∙gas noc imply indifferent effect regardless of ownership. In other
words, improvement of natural gas share has a negative impact on
commercial performance for both NOCs and IOCs. Therefore, IOCs are
reducing share of natural gas, as expected, for economic reasons.
However, NOCs are still expanding natural gas share in portfolio in
spite of the financial sacrifice.

Such difference in behaviors between NOCs and IOCs indicates a
third non-commercial objective of the NOCs, which is the environ-
mental objective. Hartley and Medlock (2008) argue that NOCs have
two noneconomic objectives, namely excessive employment and below-
market prices, as the result of political pressure. These two actions can

be regarded as subsidies to the domestic workforce and consumers in
reward for the loss in firm-level efficiency, which is confirmed in Eller
et al. (2011) and Hartley and Medlock III (2013). The NOCs’ behavior of
adding investment in the cleaner natural gas found in this paper is
likely to be a subsidy to domestic residents under political pressure for a
better environment. As a comparison, the IOCs have less political
pressure on them, and hence reduce share of natural gas for economic
purposes. In summary, the different behaviors of IOCs and NOCs are
economics-driven and environment-driven, respectively.

Besides the output share by product, Table 6 also predicts the effects
of output share by segment and by region on firm-level efficiency.
Vertically, the marking segment is more efficient than the upstream and
refining segments, hence increasing the share of marking can raise firm-
level efficiency. Geographically, companies that have more footprints
and activities in Asia-Pacific, Africa, America, and Europe are likely to
outperform in efficiency. Although not reported in Table 6, the esti-
mations of the year dummy variables are robust across the five col-
umns. The average efficiency increased in 2010 and 2011, but de-
creased over the period of 2012–2015. This non-linear and non-
monotonic trend verifies the necessity of using CSS and KSS models,
rather than the BC model in Hartley and Medlock III (2013). Detailed
estimations of the year dummy variables are available on request.

6. Conclusion and policy implications

Natural gas is usually compared with coal and renewable energy, as
they are the competing sources in electricity generation. However, its
main competitor is crude oil from the supply side, since petroleum
enterprises can decide the share of natural gas and crude oil in their
portfolios. Moreover, oil and gas are competing in the automobile
market. This paper finds large oil and gas companies on average are
reducing share of natural gas because producing gas is not as efficient as
producing oil in both NOCs and IOCs. As the investment in and ex-
penditure on crude oil are increasing, the gap between oil and gas can
be enlarged, which will, in turn, further discourage R&D and the pro-
duction of natural gas.

The political pressure around environmental concerns can affect the
behavior of NOCs, but has achieved limited influence on IOCs to date.
On the one hand, governments may adjust the relative tax rate for crude
oil and natural gas in favor of the latter. On the other hand, govern-
ments can adjust its R&D distribution between crude oil and natural gas
to increase the productivity of gas extraction. These actions could be
more effective than environmental pressure on IOCs, as this paper has
shown that the commercial objective is the priority for this cohort.

Table 2
Estimation results of the stochastic frontier models.

CSSG KSS Jackknife Average

Four-input Three-input Four-input Three-input Four-input Three-input

Labor 0.393*** 0.344*** 0.253*** 0.199*** 0.292*** 0.230***
(0.013) (0.012) (0.028) (0.027) (0.025) (0.025)

OilRsv 0.218*** – 0.144*** – 0.164*** –
(0.010) – (0.039) – (0.034) –

GasRsv 0.300*** – 0.508*** – 0.451*** –
(0.009) – (0.043) – (0.037) –

TotalRsv – 0.581*** – 0.735*** – 0.702***
– (0.010) – (0.031) – (0.028)

RefCap 0.090*** 0.075*** 0.095*** 0.066*** 0.094*** 0.068***
(0.006) (0.005) (0.023) (0.021) (0.020) (0.019)

OilPr 0.307*** 0.299*** 0.059 0.033 0.127*** 0.090*
(0.018) (0.017) (0.061) (0.057) (0.053) (0.051)

GasPr 0.092** 0.080* 0.020 −0.005 0.040 0.013
(0.044) (0.041) (0.061) (0.057) (0.057) (0.054)

w* – – – – 0.2760 0.2161

Notes: Significant at: *10, * *5 and * * * 1 percent; Standard error in parentheses.

Table 3
Technical efficiency statistics.

Four-input model Three-input model

Eff SFA
1 Eff DEA

1 Eff SFA
2 Eff DEA

2

Mean 0.46 0.55 0.45 0.47
Minimum 0.12 0.02 0.10 0.02
25% quantile 0.29 0.28 0.25 0.23
50% quantile 0.42 0.54 0.38 0.42
75% quantile 0.60 0.81 0.63 0.65
Maximum 1.00 1.00 1.00 1.00

Table 4
Correlation of efficiencies across models.

Eff SFA
1 Eff DEA

1 Eff SFA
2 Eff DEA

2

Eff SFA
1

1 0.8156 0.9036 0.7917

Eff DEA
1

0.8156 1 0.7354 0.8940

Eff SFA
2

0.9036 0.7354 1 0.8398

Eff DEA
2

0.7917 0.8940 0.8398 1

Table 5
Robustness of the efficiencies across models.

Eff DEA
1 Eff SFA

2 Eff DEA
2

Eff SFA
1

0.822*** 0.914*** 0.801***

(0.059) (0.045) (0.050)
Constant term 0.185*** 0.037* 0.093***

(0.029) (0.022) (0.025)
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How to make the NOCs more efficient and competitive relative to
IOCs is another challenge faced by governments. This paper shows the
efficiency difference between NOCs and IOCs is decreasing as time goes
by. Excessive employment is not purely a political burden, but implies
massive potential human capital. Training workers’ skills and devel-
oping their experience can encourage innovation in NOCs, and hence
improve their productivity and efficiency, especially in the context of
the shale technical revolution.

Moreover, there are tradeoffs among below-market energy prices,
excessive employment, and more clean products. When maintaining
efficiency at a certain level, governments can adjust the amount of these
subsidies. In the context of energy saving and environmental protec-
tion, governments may consider cutting the energy price subsidy, while
encouraging more production of natural gas. The former action can
reduce the total consumption of energy and the volume of emissions,
while the latter can increase the share of cleaner energy in portfolio and
hence further decrease emissions intensity. As domestic consumers and
residents have become more aware of environmental protection and
emissions reduction in recent years, such transfer of subsidies is facing
fewer obstructions.

In summary, the paper aims to explore the impact of gas ratio on
firm-level efficiency for large petroleum companies during the period
2009–2015. A Jackknife-weighted average of CSS and KSS models helps
derive firm-level efficiency more accurately. The derived efficiency is
then decomposed to predict the effect of various efficiency determi-
nants with an emphasis on gas ratio and ownership. To our knowledge,
this is the first study to analyze the efficiency of the petroleum industry
after the financial crisis, and the first to explain the different behaviors
on natural gas ratio for NOCs and IOCs.

Using a panel data of 54 large oil and gas companies, the effect of
gas ratio on efficiency is found to be significantly negative. Moreover,
this impact is indifferent between IOCs and NOCs. These findings imply
that the decline in gas ratio for IOCs is economics-driven, and the in-
cline in gas ratio for NOCs is environment-driven. Hence, the en-
vironmental objective is the third non-commercial objective of NOCs
after the subsidies of below-market energy prices and excessive em-
ployment found in the literature. Finally, governments may consider
the transfer of subsidies from energy price to clean energy promotion,
which leads to energy saving and emissions reduction.
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