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A B S T R A C T   

Global climate change is aggravating the occurrence of pests and diseases, however, pesticide residue caused by 
the abuse of chemical pesticides is emerging as a worldwide issue with a great threat to the ecological envi-
ronment, human health, and food security. Biopesticide application, a component of climate-smart agricultural 
practices, is viewed as a vital alternative for agricultural sustainable development. Due to the additional cost 
attached to externalities and information insufficiency, the adoption rates of biopesticide are still quite low in 
most developing countries. By using panel data of 3143 rural households from 2020 to 2021 in Jiangsu Province, 
this paper builds a theoretical framework of whether and how specialized agricultural service (SAS) for 
specialized pest control affects farmers’ biopesticide application, and then employs an Endogenous Switching 
Probit model to verify this effect and its channels empirically. The empirical results show that the SAS purchase 
can increase significantly the probability of smallholders’ biopesticide adoption by 30.8%. Without consideration 
of the self-selection bias, this probability would drop to 16.2%. The potential channels of the SAS influencing 
farmers’ biopesticide application are technology popularization (training) and machinery substitution resulting 
from SAS. Moreover, our findings also indicate that the effects of SAS on biopesticide adoption are heteroge-
neous, and vary with farmers’ education level, cooperative members, and land size. This paper provides the first 
empirical evidence for the effect of SAS on biopesticide promotion, which is expected to contribute to agricul-
tural sustainable development and food safety in most developing countries.   

1. Introduction 

In the context of global climate change aggravating the occurrence of 
pests and diseases, chemical pesticides play a vital role in pest control 
and disease reduction, and grain yield increase (Bagheri et al., 2019; 
Huang et al., 2003; Mazhar et al., 2021). In China, about 80 million tons 
of grain loss were averted from pesticide inputs in 2019 (Ministry of 
Agriculture of China, 2020). However, with high toxicity and residues, 
the overuse of pesticides has also posed a serious threat to food safety, 
human health, and ecological diversity in most developing countries, 
especially China (Finizio and Villa, 2002; Garming and Waibel, 2009; 
Mahmood et al., 2016;). The unit input of pesticides for Chinese farmers 

was 9.95 kg/ha, which was about 4 times the global average in the same 
period.2 Unfortunately, only 30% of pesticides act directly on pests and 
diseases, the remaining 70% drain into soil, water, and air, which leads 
to terrible negative externalities (Tang and Luo, 2021). 

Designed as a substitute for chemical pesticides, biopesticide appli-
cation, a component of climate-smart agricultural practices (CSAPs),3 is 
becoming increasingly popular all over the world (Hakala et al., 2011; 
Mazhar et al., 2021). Biopesticides are usually extracted from natural 
organisms and have outstanding technical features, like low residue, low 
toxicity, and pro-environment, which can alleviate the pollution of 
cultivated land and contribute to food safety (Huang et al., 2022; Sri-
nivasan et al., 2019). Given these features, Damalas and Koutroubas 
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(2018) predicted that the global market for biopesticides would outpace 
that of chemical pesticides by the 2050s, with annual growth rates of 
10% -15%. However, it is also argued that some drawbacks of bio-
pesticides, such as additional skill requirements and higher application 
costs, are the major obstacle to rapid promotion in Africa and Asia 
(Damalas and Koutroubas, 2018; Tang and Luo, 2021). Currently, the 
market share of biopesticides in China is just about 10% which is much 
lower than other developed countries with a 20% - 60% market share 
(Guo et al., 2019; Huang et al., 2022). Therefore, the research on 
farmers’ biopesticides adoption behavior or the channels of encouraging 
smallholders to adopt biopesticides will make sense for the effective 
promotion of biopesticides. 

Fruitful empirical studies have focused on farmers’ biopesticide 
adoption behavior, which mainly explored the influencing factors on 
biopesticide adoption from three broad directions regarding farmers, 
markets, and government. Among the factors derived from farmers, the 
insufficient knowledge and extra cost of biopesticides can result in 
biased cognition and effectiveness underestimation that discourage risk- 
averse farmers from adopting biopesticides (Pray and Nagarajan, 2012; 
Tang and Luo, 2021). However, Abdollahzadeh et al. (2018), Li et al. 
(2022), and Yu et al. (2019) confirmed that education, income, envi-
ronmental attitude, and land size can counteract this inhibitory effect. 
Moreover, Liu et al. (2022) and Zhang and Liu (2020) also revealed that 
joining the cooperatives plays an important role in biopesticides 
knowledge transfer and application service supply. Regarding the 
imperfect market of biopesticides, the added value of agricultural 
products applying biopesticides is usually not approved by potential 
customers for the faulty product traceability system, which is named the 
‘Lemon Market’ (Kaur et al., 2023; Luo et al., 2020). Bagheri et al. 
(2021) and Luo et al. (2020) showed that pesticide labels and market 
access can be suitable channels to make up for the lack of market 
regulation. For the factors from the side of government, some studies 
found that agricultural extension, subsidies, and insurance significantly 
influenced farmers’ biopesticides adoption behavior (Tang and Luo, 
2021; Wuepper et al., 2021). In most developing countries, biopesticide 
promotion activities are mainly the responsibility of the public extension 
department, however, its effectiveness is limited due to the poor 
connection with smallholders (Damalas and Koutroubas, 2018; Huang 
et al., 2022). 

By contrast, since specialized agricultural service (SAS) can provide 
specialized services covering pre-production, in-production, and post- 
production to smallholders, the SAS has been viewed as a bridge effec-
tively connecting smallholders with major factor markets in China (Yang 
et al., 2013; Zhang et al., 2017). Independent of land scale, SAS based on 
the division of labor can achieve economies of scale in a roundabout way 
with a better combination of machinery, labor, and other factors (Pic-
azo-Tadeo and Reig-Martínez, 2006; Yang et al., 2013). And SAS has 
been reported to significantly improve agricultural productivity and 
farm income (Baiyegunhi et al., 2019; Picazo-Tadeo and Reig-Martínez, 
2006), promoted non-agricultural employment (Lu and Gao, 2020; Sun 
et al., 2018; Zhang et al., 2017), reduced production risk (Qiu and Luo, 
2021; Yang et al., 2022), and optimized the mix of production factors 
(Lu et al., 2021; Sun and Liu, 2019). As an emerging pro-environmental 
technology in CSAPs, biopesticide not only makes sense for agricultural 
sustainable development, but also human health (Kumar et al., 2021; 
Tang and Luo, 2021). Hence, whether and how the purchase of SAS for 
specialized pest control promotes the application of biopesticide are 
problems worth further discussing for food safety and agriculture sus-
tainability, which is insightful for policymakers. 

Given the unclear relationship between SAS and biopesticide adop-
tion, this study utilizes the panel data from 2020 to 2021 at the plot level 
of 3143 rural households in Jiangsu Province, China, and applies an 
endogenous switching probit (ESP) model to explore the influence of the 
SAS on biopesticide adoption and its potential influence channels. To the 
best of our knowledge, there are few studies have explored the impact of 
SAS on CSAPs application, and all have focused on straw returning and 

organic fertilizer,4 such as Lu et al. (2021), Wan and Cai (2022), and 
Yang and Zhang (2022). Compared with previous studies, our study 
makes the following possible contributions: First, it extends to the 
existing literature on the influence of SAS over CSAPs application, since 
the biopesticide adoption is neglected. Moreover, this is the first study 
exploring the influence channels between the SAS and CSAPs applica-
tion with theoretical and empirical analysis, which was not covered by 
previous studies. Second, this study eliminates the interference of the 
time effect and self-selection bias by using panel data and the ESP model, 
while the vast majority of existing studies were conducted through 
cross-section data and didn’t consider this bias. Third, key socioeco-
nomic characteristics (e.g., education, cooperative members, and land 
size) of the sample farmers are utilized to document the evidence for the 
heterogeneous effects of SAS on CSAPs application. Overall, this study is 
expected to contribute to policymaking about CSAPs extension and 
provide useful experience for agricultural sustainable development and 
food safety in China and other developing countries, especially in the 
context of increased global climate change. 

The remainder of this article is organized as follows. Section 2 is the 
literature review and theoretical framework. Section 3 introduces the 
empirical methods, while Section 4 gives the data description. In Section 
5, we report the empirical results and related discussion. The last section 
is the conclusion and policy implications. 

2. Literature review and theoretical framework 

2.1. Literature review 

Smallholders are faced with multiple climate change shocks, like 
floods, drought, and pests & diseases, which significantly affect agri-
cultural productivity and food security (Chai et al., 2023; Chen et al., 
2023; Mazhar et al., 2021). To adapt and mitigate climate change, 
CSAPs are increasingly promoted worldwide as some practices or tech-
nologies to contribute to the global agricultural transformation into 
more productive, environmentally friendly, and sustainable agriculture- 
encouraging a balanced paradigm (Aryal et al., 2018; FAO, 2017; 
Mazhar et al., 2021). Among various CSAPs, agroforestry, cover crop-
ping, integrated crop-animal farming, and integrated pest management 
(IPM) are common practices, and have been broadly studied (Antwi- 
Agyei et al., 2021; Mazhar et al., 2021). However, as a typical practice of 
IPM, more and more scholars have paid attention to the role of bio-
pesticides in climate-smart agriculture (Heeb et al., 2019; Palombi and 
Sessa, 2013; Sekabira et al., 2022). 

Biopesticides are natural active agents for pest control that are 
extracted from biology and even certain minerals (Damalas and Kou-
troubas, 2018; Sagar, 1991). They can be roughly divided into microbial 
pesticides, agricultural antibiotics, biochemical pesticides, plant- 
extracted pesticides, and animal-extracted pesticides according to the 
source of extraction (Tang and Luo, 2021). Compared with chemical 
pesticides, biopesticides show a strong specificity and high activity, in 
other words, are relatively safe for non-targeted organisms (Uri, 1998). 
Biopesticides can theoretically replace chemical pesticides, though their 
application has positive externality and long-term benefits. As early as 
the 1980s - 1990s, China began to develop and register several bio-
pesticides, such as Wellbutrin, Abamectin, and Bacillus thuringiensis (Bt) 
pesticides (Huang et al., 2022). In 2006, the Chinese government initi-
ated a promotion project for biopesticides and then set up ten bio-
pesticides subsidy demonstration sites in 2014, among which included 
Jiangsu Province. Like other CSAPs, since biopesticides have some 
technical risks (like high cost, unstable effectiveness, and complex 
application), the market share of biopesticides is just about 10% in 
China and only 30% of biopesticides have been effectively applied (Guo 

4 The application of straw returning and organic fertilizer are two of common 
CSAPs (Aryal et al., 2018; Palombi and Sessa, 2013). 
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et al., 2019; Zheng et al., 2022). Hence, the potential market of bio-
pesticides cannot be underestimated, and the main uncertainty is the 
rates of uptake for farmers (Damalas and Koutroubas, 2018; Han et al., 
2023). More detailed information about the relationship between bio-
pesticides and CSAPs is displayed in Appendix A. 

Derived from the division of labor, specialized agricultural services 
(SAS) can also be seen as a kind of outsourcing, that is, vertical disin-
tegration in agricultural production (Quinn, 1992; Marshall, 1920; 
Smith, 1776). Generally speaking, purchasing the SAS means that a 
farmer contracts some or all of the production tasks to individuals or 
organizations that specialize in providing production services (Sun et al., 
2018). The individuals always include some skilled farmers or family 
farms, while related organizations cover agricultural public service de-
partments, cooperatives, collective economic organizations, and agri-
businesses (Qiu and Luo, 2021). Moreover, the services these 
organizations provide usually involve pre-production (e.g., seed sales), 
in-production (e.g., tillage, fertilization and pesticide application, and 
harvest), and post-production (e.g., agricultural products processing). It 
is worth mentioning that most service providers often offer several items 
of service at the same time, not just one. Taking specialized pest control 
for example, the SAS usually provides pesticide use consulting & 
training services, mechanical spraying services, and others (Sun et al., 
2018). 

Viewed as a supplement to the public extension department, SAS has 
a special advantage in the supply of production factors or new tech-
nologies (Ren, 2023; Tang et al., 2018). Hence, the related official 
government documents5 have proposed to enhance the supply and 
application of agricultural pro-environmental technologies through the 
SAS, which include biopesticides. As regards specialized pest control, 
purchasing SAS has at least two advantages over management by 
smallholders. First, it can help farmers overcome the increasing demand 
for labor and their disadvantages concerning the use of spraying ma-
chines and other plant protection machineries (Igata et al., 2008; Tang 
et al., 2018; Yang et al., 2013). Second, professional service organiza-
tions with specialized expertise in specialized pest control can help 
farmers who lack certain skills overcome their skill and knowledge 
constraints in pesticide use, which can reduce technology application 
risk and boost the efficiency of pest control (Qiu et al., 2021; Sun et al., 
2018; Yang et al., 2022). Since the application of biopesticides has 
additional requirements for both information (knowledge) and ma-
chinery (labor), the purchase of corresponding SAS is likely to affect the 
adoption of biopesticides. More detailed information about SAS is shown 
in Appendix B. 

2.2. Theoretical framework 

To further understand the effect of SAS on biopesticides adoption, we 
construct a Technology Selection Model proposed by Just and Zilberman 
(1988) and Ridier et al. (2013). Assume that the smallholders face the 
constraints of land, capital, and labor in incomplete factor markets, and 
they mainly decide the adoption of agricultural technologies based on 
their family’s initial endowment. Suppose that a householder owns 
farmland (S), labor (L), and capital (K), where the farmer applies 
chemical pesticides in farmland (S0) and biopesticides in farmland (S1),6 

so S0 + S1 = S. The profit per unit area applying chemical pesticides (π̃0) 
and biopesticides (π̃1) are as follows: 

{
π̃0 = π0 + ε0
π̃1 = π1 + ε1

(1) 

Where ε0 and ε1 are the random interference of profit per unit area 
under the chemical pesticides and biopesticides adoption respectively. 
The means of π̃0 and π̃1 are E(π̃0) = π0 and E(π̃1) = π1, and the variances 
are V(π̃0) = σ2

0 and V(π̃1) = σ2
1. We assume that the uncertainty of output 

under biopesticides is greater than that under chemical pesticides, that 
is, σ2

1 > σ2
0. 

Suppose that farmers consider profit and risk comprehensively when 
making production decisions and pursue utility maximization, we use a 
Mean-Variance approach7 to solve the maximization problem: 

max EU = E(π̃0S0 + π̃1S1) −
1
2
∅V(π̃0S0 + π̃1S1) (2)  

s.t.l0S0 + l1S1 ≤ L, k0S0 + k1S1 ≤ K (3) 

Where ∅ represents the producer absolute risk aversion index or 
Arrow-Pratt of absolute risk aversion index,8 and ∅ = − EU′′/EU′. l0 and 
l1 are the demands of labors per unit area applying chemical pesticides 
and biopesticides, while k0 and k1 are the demands of capital per unit 
area respectively. Expanding the variance in Eq. (2) and considering the 
constraint conditions (Eq. (3)), the Lagrange method is used to calculate 
the extreme value, and Eq. (2) is further transformed into: 

Max EU = π0S0 + π1S1 −
1
2
∅
[
(S − S1)

2σ2
0 + S1σ2

1 + 2(S − S1)S1ρσ0σ1
]

+λ1(L − l0S0 + l1S1) + λ2(K − k0S0 + k1S1)

(4) 

Then, by calculating the first-order condition of EU to S1, we can 
derive the value of S1 when EU gets the max value (∂EU

∂S1
= 0): 

S1 =

1
∅ (π1 − π0) + Sσ0(σ0 − ωσ1) − λ1(l1 − l0) − λ2(k1 − k0)

σ2
1 + σ2

0 − 2ωσ0σ1
(5) 

Where ω is the correlation coefficient of π1 and π0, we assume that 
ω < 0 because one purpose of adopting a mix of chemical pesticides and 
biopesticides is to reduce production risk. λ1 and λ2 respectively repre-
sent the labor and capital constraints faced by farmers. The larger the 
value, the greater the constraint faced by farmers. 

Inferred from Eq. (5), farmers’ adoption of biopesticides is affected 
by two sets of factors: (i) The constraints of initial endowment owned by 
farmers, such as land and capital, as well as the degree of risk aversion 
for farmers. The relationship between these factors and biopesticide 
adoption is as follows: ∂S1/∂S > 0, ∂S1/∂λ1 < 0, ∂S1/∂λ2 < 0, and 
∂S1/∂∅ < 0. (ii) The technical features of biopesticides, including the 
uncertainty about the effectiveness and the demand for labor and cap-
ital. The relationship between these factors and biopesticide adoption is 
as follows: ∂S1/∂σ2

1 < 0, ∂S1/∂l1 < 0, and ∂S1/∂k1 < 0. 
Combined with the existing studies for the SAS, we suppose that the 

SAS affects the adoption of biopesticides mainly through two channels: 
(i) Making up for the shortage of labor (λ1) and dedicated capital (λ2;e.g., 
plant protection machinery) when farmers apply biopesticides; (ii) 
Reducing farmers’ risk aversion (∅) and technology application risk (σ2

1) 
for biopesticides by relevant knowledge popularization or training. 
Hence, we propose the hypothesis that the SAS can positively promote 
biopesticides adoption and will verify the above-mentioned promotion 
channels in the later section (Fig. 1). As some studies also pointed out 
that the land size can affect the farmers’ decisions on SAS purchase and 

5 “Guidelines on Accelerating the Development of Agricultural Producer 
Services” (http://www.gov.cn/gongbao/content/2018/content_5271797.htm) 
in 2017 and “Suggestions on Promoting Effective Linkage between Smallholders 
and Modern Agricultural Development” (http://www.gov.cn/zhengce/2 
019-02/21/content_5367487.htm) in 2019.  

6 The specific situation of the adoption of biological and chemical pesticides 
by farmers in this study is placed in Appendix E. 

7 A classical method to calculate the optimal portfolio choice in the Portfolio 
Theory (Just and Zilberman, 1988; Ridier et al., 2013).  

8 The increase of ∅ means that farmers’ risk avoidance degree is deepened 
(Ridier et al., 2013). 
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biopesticides adoption (Qiu and Luo, 2021; Tang and Luo, 2021), and 
∂S1/∂S > 0 in our analytical framework, we further explore the role of 
land size in our study. 

3. Empirical methods 

To evaluate the effect of SAS on farmers’ decision to biopesticides 
adoption, an outcome equation can be expressed as: 

T*
it = α+ βXit + γAit + μit with Tit =

{
1 if T*

it > 0
0 otherwise

(6) 

Where T*
it (latent variable) denotes the expected net benefits of bio-

pesticides adoption for household i in year t, a farmer would opt to adopt 
biopesticides (Tit=1) if T*

it = π1 − π0 > 0. Ait represents a dummy vari-
able that measures the SAS purchase status of farmers (purchaser = 1; 
non-purchaser = 0); μit is an error term. Xit is a vector of control vari-
ables potentially associated with smallholders’ decisions in SAS pur-
chase or biopesticides adoption. According to the relevant literature, 
these control variables generally include individual characteristics (e.g., 
age, gender, and education), household features (e.g., family labor, in-
come, and subsidy), farm features (e.g., land size, land fragmentation, 
and crop variety), and region and year dummy variables (Deng et al., 
2020; Picazo-Tadeo and Reig-Martínez, 2006). 

3.1. The ESP model 

However, applying the ordinary least squares (OLS) specification in 
Eq. (6) can lead to biased or spurious estimations, because farmers may 
self-select to purchase SAS that is influenced by some unobservable 
characteristics (e.g., incentives and capabilities). Moreover, it’s impos-
sible to observe the biopesticides adoption by the same peasant at the 
same time when purchasing SAS versus without purchasing SAS, which 
is also termed simultaneity bias. To address the issues of self-selection 
and simultaneity biases, some econometric methods, such as pro-
pensity score matching (PSM) and treatment effect model (TEM), have 
been widely conducted (Pan et al., 2017; Tam and Shimada, 2021). 
Nevertheless, the PSM method has a limitation in that it just deals with 

self-selection correlated with observed factors and ignores the impacts 
of unobserved factors, while the TEM method assumes that the influence 
of control variables on biopesticides adoption does not differ between 
SAS purchasers and non-purchasers (Tang and Luo, 2021). By contrast, 
the ESP method,9 which makes up for the limitations of the above two 
methods, employs the full information maximum likelihood (FIML) 
strategy to estimate one selection and two outcome equations simulta-
neously (Ren et al., 2021). This method recognizes the self-selection of 
SAS purchase is derived from the expected benefits of SAS, and assumes 
that different statuses may exist between SAS purchasers and non- 
purchasers. Following Kumar et al. (2018), the selection equation is 
expressed as: 

A*
it = βXit + δIit + θit with Ait =

{
1 if A*

it > 0
0 otherwise

(7) 

Where A*
it (latent variable) measures the difference between the ex-

pected benefits of SAS purchasers and non-purchasers, a farmer would 
opt to purchase SAS (Ait = 1) if A*

it > 0. Xit is a vector of control variables 
representing farmers’ decisions to purchase SAS. θit is an error term 
following a normal distribution with zero means. Considering the se-
lection bias, Eq. (7) incorporates an instrument variable (IV), Iit, that 
captures the peer effects for SAS purchase at the village level (i.e., 
village-level purchase rates of SAS except for the farmer himself). Given 
that the similar IV has been employed in the studies of Deng et al. (2020) 
and Qiu et al. (2021), the validity of this IV relies on two critical criteria: 
1) this IV influences farmers’ decision of SAS purchase, and 2) this IV has 
no direct effect on farmers’ biopesticides adoption except through SAS 
purchase. Due to the space constraint, we show the content of the IV’s 
validity testing in Appendix C. 

Correspondingly, two regime equations are expressed to interpret 
the different outcomes of biopesticides adoption, which are defined as 
follows: 

Regime 1 : T1it = β1X1it + τ1it if Ait = 1 (8a)  

Regime 2 : T0it = β0X0it + τ0it if Ait = 0 (8b) 

Where T1it and T0it are decisions of biopesticides adoption for SAS 

Fig. 1. Conceptual framework.  

9 Although the ESP method is often used for cross-section data (e.g., Aryal 
et al., 2020; Sun, 2018), more and more studies have applied it in the case of 
panel data and have been published in international top or authoritative jour-
nals, such as Kumar et al. (2018) and Lin et al. (2022). 
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purchasers and non-purchasers, respectively. X1it , X0it are the vectors of 
the exogenous variables mentioned above that might influence the de-
cisions. β1 and β0 denote the parameters to be estimated, while τ1it and 
τ0it is the random disturbance term. Following Miranda and Rabe- 
Hesketh (2006), the θit, τ1it , and τ0it are jointly normally distributed, 
and the correlation matrix is specified as: 

Ω = cov(θit, τ1it, τ0it) =

⎛

⎝
1 ρ0 ρ1

1 ρ10
1

⎞

⎠ (9) 

Where ρ0, ρ1, and ρ10 indicate the correlations between τ0it and θit , τ1it 

and θit, and τ0it and τ1it, respectively. If ρ1 ∕= ρ0 ∕=0, Ait, the binary cat-
egorical variable for SAS purchase, is viewed as an endogenous variable 
that provides a biased estimator, while ρ10 can’t be calculated (Huang 
et al., 1991). Furthermore, ρ1 and ρ0 respectively measure the extent to 
which SAS influences the biopesticides adoption decision of purchasers 
and non-purchasers. 

3.2. Treatment effects estimating 

After attaining the parameters of the ESP model through the FIML 
strategy, the self-selection-bias corrected estimators of different treat-
ment effect measures suggested by Caliendo and Kopeinig (2008) — 
average treatment effect on the treated (ATT) and average treatment 
effect (ATE) — are expressed as: 

ATT = E[Pr(T1 = 1|A = 1,X = x) ] − E[Pr(T0 = 1|A = 1,X = x) ]

= E[(Φ(β1X1, δI, ρ1) − Φ(β0X0, δI, ρ0)/F(δI) ] (10)  

ATE = E[Pr(T1 = 1|A = 1,X = x) ] − E[Pr(T0 = 1|A = 0,X = x) ]
= E[F(β1X1) − F(β0X0) ]

(11) 

Where Φ and F represent the cumulative function of a bivariate 
normal distribution. Pr(T1 = 1|A = 1,X = x) and Pr(T0 =

1|A = 1,X = x) are predicted probabilities of biopesticides adoption for 
SAS purchasers in observed and counterfactual contexts, while Pr(T0 =

1|A = 0,X = x) represents predicted biopesticides application proba-
bilities for service non-purchasers in the observed context. Since ATT 
focuses on the impact on the farmers who actually purchased SAS and 
ATE is based on the whole sample, the estimates of ATT could make 
more sense for policy-makers (Heckman, 1997). Therefore, we would 
mainly report the results of ATT in Section 5.3. 

3.3. Mechanism analysis 

To explore the channels or mechanisms underlying the influence, we 
further conduct a mediation analysis approach. Regarding the mediating 
effects, we also conduct a stepwise regression proposed by Valeri and 
VanderWeele (2013) to identify the causal mediating effects between 
SAS purchase and biopesticides adoption. First, considering the pre-
treatment confounders, SAS purchase is viewed as a treatment variable 
or potential mediator is incorporated into Eq. (12a). Second, we regress 
the mediation with a specified outcome model in Eq. (12b), which 
covers the interaction terms between SAS purchase and potential 
channels. 

Mit = α2 + γ1Sit + γ2Xit +ϑit (12a)  

Tit = α3 + γ3SitMit + γ4Sit + γ5Mit + γ6Xit + εit (12b) 

Where Mit are the mediating variables of SAS purchase affecting 
biopesticides adoption, Tit, Ait, and Xit are the same variables in Eqs. (6) 
and (7), while γ represents the vector of parameters to be estimated. The 
variable (Mit) is viewed as the mediator if γ1∕=0 and γ3∕=0, denoting that 
Ait has a statistically significant effect on Tit via Mit.

4. Data 

4.1. Data sources 

Data utilized in this paper were derived from China Land Economic 
Survey (CLES) carried out by Nanjing Agricultural University in 2020 
and 2021.10 The two rounds of partial follow-up surveys conducted the 
sampling method of Probability Proportional to Size (PPS) and covered 
the information of villagers that covers the basic characteristics of 
household members, agricultural production at the plot level, factor 
market, and so on. Specifically, fifty-two administrative villages were 
chosen from thirteen prefecture-level cities of Jiangsu Province in 2020, 
while twelve prefecture-level cities were traced in 2021. Given that fifty 
villagers were randomly sampled in each administrative village, this 
database contains 2628 households in 2020 and 2420 households in 
2021. By eliminating the outliers and missing values, we finally 
employed the panel data with 3143 observations, where 1608 obser-
vations are included in 2020 and 1535 observations in 2021.11 

As a major grain-producing area of China, Jiangsu province is 
crossed by the Qinling Mountains-Huaihe River Line12 and has the 
common characteristics of agricultural production in both southern and 
northern China (Fig. 2). By 2019, Jiangsu province had developed 
12,697 SAS organizations, of which 6300 were dedicated to providing 
specialized pest control services.13 With frequent outbreaks of diseases 
and insect pests, Jiangsu Provincial has invested a special fund of 15 
million yuan every year to subsidize biopesticides and other plant pro-
tection materials for specialized pest control since 2012, and 26,425 
tons of biopesticides were used in 2017, accounting for 35% of chemical 
pesticide use.14 Hence, exploring the impact of SAS on biopesticides 
adoption in Jiangsu province can be a typical experience and provides 
useful insights into the agricultural sustainable development of China, 
and even other developing countries. 

4.2. Variable specification 

Table 1 presents the description and summary statistics of the main 
variables employed by our study. We use a dummy variable indicating 
whether farmers adopt biopesticide to measure farmers’ biopesticide 
adoption behavior. Moreover, another dummy variable refers to 
whether to purchase SAS for specialized pest control is chosen as the key 
explanatory variable. As shown in Table 1, farmers who adopted bio-
pesticide account for 48.5% and 44.2% of all respondents in 2020 and 
2021,15 while the proportion of farmers who purchased SAS reached 
52.1% in 2020 and 42.2% in 2021. To address the issue of self-selection, 
the instrumental variable in this study includes the services network, 

10 Data and original questionnaire are illustrated in https://jscv.njau.edu. 
cn/#/index.  
11 There are 73 attritions in this panel survey, referring to the low attrition 

rate (4.4%), which is much lower than the 10%—20% attrition rate of other 
common sociological surveys at the national level of China (Liang, 2011). 
Moreover, since these attritions are caused by the death of some old re-
spondents and the transfer of residence that no longer engaged in agricultural 
work, the issue of sample selection would not arise, because these respondents 
have been excluded in the population components of 2021(Bhattacharya, 2008; 
Hirano et al., 2001).  
12 The Qinling-Huaihe Line is the geographical dividing line between northern 

and southern regions in China. To the north and south of this line, there are 
obvious differences in natural conditions, geographical features, agricultural 
production or people’s living customs (Liu et al., 2015).  
13 Data source: http://nynct.jiangsu.gov.cn/art/2021/3/25/art_13464_971 

4414.html.  
14 Data source: http://www.agroinfo.com.cn/other_detail_5081.html.  
15 The most commonly used biopesticides and the largest market share in 

Jiangsu Province are Bacillus thuringiensis (Bt) and Validamycin, both of which 
are microbial biopesticides. 
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which refers to the village-level purchase rates of SAS (the average 
purchase rate was 44.3% in 2020 and 34.5% in 2021). 

Regarding other control variables, this study selects 14 variables in 3 
categories as control variables, including householder’s individual 
characteristics, family characteristics, and farm features. Firstly, Age, 
Gender, Education, Health, Risk attitude, Time preference, and 

Environmental attitude are included as the householder’s individual 
characteristics. Table 1 displays that the average age of sample house-
holders is 61 years old in 2020 and 62 years old in 2021, the average 
year of formal education is 7, while nearly 92% of householders are 
male. According to Liebenehm and Waibel (2014) and Tanaka et al. 
(2010), far-sighted farmers are more likely to invest a new agricultural 

Fig. 2. Distribution of sample counties in Jiangsu Province, China.  

Table 1 
Description and summary statistics of variables.  

Variables Description Year:2020 Year: 2021 

Mean S.D. Mean S.D. 

Biopesticide adoption 1 if farmers adopted biopesticide; 0 otherwise 0.485 0.497 0.442 0.496 
Specialized agricultural 

services 
1 if farmers purchased SAS for specialized pest control; 0 otherwise 0.521 0.500 0.422 0.494 

Services network (IV) Village-level purchase rates of SAS (excluding farmer-self) 0.443 0.296 0.345 0.253 
Control variables:   
Age Age of household head (years) 61.372 10.096 62.605 10.363 
Gender 1 if householder is male; 0 otherwise 0.918 0.274 0.922 0.268 
Education Education level of household head (years) 7.258 3.580 7.363 3.628 
Health Very bad = 1, bad = 2, general = 3, good = 4, excellent = 5 3.908 1.066 4.011 1.074 
Risk attitude Risk aversion =1, risk neutrality = 2, risk preference =3 1.308 0.588 1.298 0.564 
Time preference Near-sighted = 1, general-sighted = 2, far-sighted = 3 1.707 0.727 1.688 0.681 
Environmental attitude Not behaving environmentally = 1, generally = 2, behaving environmentally = 3 2.615 0.528 2.638 0.505 
Income Total family income that excludes subsidy (yuan, Log (income+1)) 11.305 1.387 11.155 1.375 
Subsidy Subsidies for grain planting (yuan, Log(subsidies+1)) 5.662 2.573 5.263 2.874 
Agricultural labor Number of labors involved in agricultural production 1.756 0.864 1.755 0.832 
Cooperative member 1 if householder is a member of the cooperative; 0 otherwise 0.025 0.155 0.022 0.145 
Land Area of cultivated land actually operated by household (mu, Log (land+1)) 1.948 1.321 1.822 1.312 
Land2 Square item of cultivated land area 5.537 8.153 5.040 8.330 
Land fragmentation Ratio of land pieces to land area 1.133 3.235 1.250 2.297 
Crop variety Rice = 1 and maize = 0 0.801 0.399 0.792 0.462 
Mediator variables:   
Training or popularization 1 if householder got training or introduction for biopesticide from SAS; 0 otherwise 0.334 0.472 0.345 0.476 

Machinery substitution 1 if householder didn’t purchase agricultural machinery but purchased related mechanical spraying 
services; 0 otherwise 

0.337 0.188 0.327 0.469 

Note: yuan is a Chinese currency unit (1 USD = 6.71 yuan on January 14th, 2023). 1 mu = 1/15 ha. For data smoothing, we took the logarithm of these variables such as 
Income, Subsidy, Land, and Non-farm income. 
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technology than near-sighted farmers, since far-sight shows a high de-
gree of patience Duflo et al. (2011). Similarly, Simtowe et al. (2006) and 
Mao et al. (2019) argued that risk-averse farmers generally hesitate to 
try new technologies. And Huang et al. (2022) showed that a farmer 
paying attention to environmental protection is more likely to apply 
biopesticides. Secondly, we control the family characteristics related to 
Income, Subsidy, Agricultural labor, and Cooperative member. Family 
income and subsidy are the vital financial sources of SAS and biopesti-
cide purchase, while the quantity of agricultural labor and becoming 
cooperative members play an important role in agricultural production 
decision-making (Igata et al., 2008; Lin et al., 2022). Finally, the farm 
features are controlled, such as Land, Land fragmentation, and Crop 
variety. The bigger area of cultivated land or less fragmented farmland 
the farmers till, the smaller the unit cost and implementation difficulty 
of SAS operation and biopesticide application (Qiu and Luo, 2021). 
Moreover, different crop varieties have different demands for SAS and 
biopesticide (Huang et al., 2003; Huang et al., 2022). Since Qiu and Luo 
(2021) and Qian et al. (2022) found an inverted U-shaped relationship 
between farm size and SAS purchase, we also include the square item of 
Land to capture the heterogeneous effects on SAS purchase. 

To explore the impact channels between SAS and biopesticide 
adoption, we further incorporate two mediator variables into bench-
mark regression. As listed in Table 1, two possible channels (mediator 
variables) contain Training (popularization) and Machinery substitu-
tion. According to previous studies, purchasing SAS can release the 
agricultural labor force to wield some new agricultural technologies and 
machinery to improve agricultural productivity (Baiyegunhi et al., 
2019; Picazo-Tadeo and Reig-Martínez, 2006). The decision of adopting 
biopesticide may be affected by SAS through the above two channels, 
since biopesticide is viewed as a new capital-intensive agricultural 
technology. 

Table 2 provides the mean differences in controlled characteristics 
between farmers purchasing SAS and farmers who didn’t purchase. As 
shown in Table 2, farmers who purchased SAS tend to be better 
educated, more risk-sought, farther-sighted, and more environmentally 

friendly than farmers who didn’t purchase in 2020, while SAS- 
purchased farmers are better educated and healthier than farmers who 
didn’t purchase in 2021. These findings denote possible self-selection 
related to the SAS purchase decision. Moreover, households that pur-
chased SAS have more subsidies, larger land sizes, less agricultural 
labor, and less fragmented land in both years, though the households 
that had more income and joined cooperatives are more likely to pur-
chase SAS in 2021. Overall, the t-statistics analysis in Table 2 is reve-
latory about the differences in controlled characteristics and 
biopesticide adoption between two groups of farmers. However, we 
cannot draw an inference about the impact of SAS on biopesticide 
adoption because the results are concluded without controlling other 
variables and self-selection bias. By contrast, the results drawn from an 
econometrics analysis are more reliable, which will be introduced in the 
next section. 

5. Results and discussion 

Table 3 displays the joint estimation results of farmers’ SAS purchase 
selection model and biopesticides adoption outcome model. Firstly, the 
likelihood ratio (LR) test in two-stage equation of the ESP model rejects 
the null hypothesis that ρ1 is equal to ρ0 at a significance level of 5%, 
suggesting that the characteristics of farmers who purchased SAS differ 
from farmers who didn’t. Combining that the ρ1 is statistically signifi-
cant, which denotes that SAS does influence the biopesticides adoption 
decision of purchasers, the application of the ESP model addressing self- 
selection bias seems to be reasonable. In this context, the results of the 
two-stage equation are shown separately in the following sub-sections. 

5.1. Determinants of SAS purchase 

Column 1 of Table 3 shows the influences of covariates on SAS 
purchase. As regards individual characteristics and family characteris-
tics, education, family income, and cooperative member have a signif-
icant positive impact on farmers’ SAS purchase decisions. That is, the 

Table 2 
Mean differences in characteristics by year.  

Variables Year: 2020 Year: 2021 

Purchasers Non-purchasers Diff. Purchasers Non-purchasers Diff. 

Age 61.459 61.276 0.184 62.737 62.509 0.228 
(0.321) (0.382) (0.496) (0.392) (0.367) (0.545) 

Gender 0.906 0.931 − 0.025** 0.928 0.917 0.011 
(0.010) (0.009) (0.013) (0.010) (0.009) (0.014) 

Education 7.728 6.827 0.901*** 7.790 7.053 0.537*** 
(0.125) (0.122) (0.175) (0.123) (0.145) (0.190) 

Health 
3.994 3.830 0.164 4.066 3.936 0.130** 
(0.367) (0.037) (0.052) 0.036 (0.044) (0.056) 

Risk attitude 
1.341 1.277 0.065** 1.310 1.281 0.029 
(0.022) (0.019) (0.029) (0.020) (0.022) (0.030) 

Time preference 1.762 1.656 0.106*** 1.695 1.678 0.017 
(0.026) (0.025) (0.036) (0.023) (0.028) (0.036) 

Environmental attitude 
2.650 2.582 0.068*** 2.643 2.630 0.013 
(0.018) (0.018) (0.026) (0.017) (0.020) (0.027) 

Income (log) 
11.436 11.184 0.252*** 11.172 11.142 0.030 
(0.055) (0.041) (0.068) (0.053) (0.048) (0.072) 

Subsidy (log) 
6.066 5.222 0.844*** 5.935 4.772 1.163*** 
(0.070) (0.106) (0.125) (0.093) (0.107) (0.148) 

Agricultural labor 1.656 1.848 − 0.192*** 1.671 1.869 − 0.198*** 
(0.031) (0.029) (0.042) (0.028) (0.033) (0.043) 

Cooperative member 
0.038 0.013 0.025*** 0.031 0.008 0.023 
(0.007) (0.004) (0.008) (0.006) (0.003) (0.008) 

Land (log) 
2.033 1.855 0.178*** 2.021 1.676 0.345*** 
(0.037) (0.054) (0.065) (0.046) (0.048) (0.068) 

Land fragmentation 0.773 1.525 − 0.752*** 0.850 1.542 − 0.693*** 
(0.018) (0.164) (0.158) (0.039) (0.098) (0.119) 

Biopesticide adoption 0.767 0.088 0.679*** 0.814 0.153 0.662*** 
(0.014) (0.010) (0.018) (0.016) (0.012) (0.020) 

Note: *** p < 0.01. ** p < 0.05. * p < 0.1. Standard errors are displayed in parentheses. 
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more educated farmers are more likely to realize the comparative ad-
vantages of SAS in agricultural production and have more access to its 
market information, while higher family incomes also help farmers pay 
for SAS (Luo, 2017; Zhang et al., 2017). Given that smallholders pur-
chasing SAS always bear a relatively higher transaction cost, Ma et al. 
(2019) and Sun (2017) revealed that the cooperative can integrate 
members’ demand for SAS and bargain with service providers, which 
confirms the positive effect of joining a cooperative on SAS purchase. 

What is striking is that all covariates included in the farm features 
show a significant influence on farmers’ SAS purchases. The estimated 
results reveal that land size and SAS purchase exist in an inverted U- 
shaped relationship, which is similar to the findings of Qiu and Luo 
(2021) and Qian et al. (2022). The reason behind this nonlinear rela-
tionship can be that skilled cultivators are more inclined to become 
service providers themselves with the area of cultivated land growing 
(Qiu and Luo, 2021). Moreover, as land fragmentation is negatively 
correlated with service purchase, accelerating the continuous circula-
tion of cultivated land is conducive to large-scale management (Yang 
et al., 2013). 

Additionally, the coefficient of services network (IV) is significant at 
a significance level of 1%, that is, the peer effects from other villagers 
can directly influence the farmers’ decision to SAS purchase. We also test 

the validity of this instrumental variable by various methods, though the 
related results are placed in Appendix C to save space. 

5.2. Determinants of biopesticide adoption 

The results of the outcome equations listed in columns 2 and 3 
(Table 3) display that the drivers of farmers’ decisions to adopt bio-
pesticides differ with respect to SAS purchasers and non-purchasers. 
Compared with the non-significant results of SAS non-purchasers, age, 
education, time preference, and subsidy show a statistically significant 
impact on the biopesticides adoption of SAS-purchased households. 
Stated differently, the younger and more educated the farmers are and 
the more subsidies they have, the bigger the probability they have to 
apply biopesticides, while the near-sighted farmers will resist bio-
pesticides for additional costs and uncertainty (Constantine et al., 2020; 
Mao et al., 2021). By contrast, the significant coefficients of agricultural 
labor for service non-purchasers suggest that the lack of labor force can 
hinder the adoption of biopesticides (Nyangau et al., 2022; Yang et al., 
2013). 

Furthermore, the estimated coefficients of risk attitude, environ-
mental attitude, and land size variables are statistically significant for 
both service purchasers and non-purchasers, consistent with Huang 
et al. (2022), Luo et al. (2020), and Tang and Luo (2021). Since the 
effectiveness of biopesticides perceived by smallholders is sometimes 
unstable and underrated, the application probability of biopesticides for 
risk-averse farmers is small. However, both Luo et al. (2020) and Tang 
and Luo (2021) believe that purchasing insurance could avoid the effect 
of risk aversion to some extent, and a positive environmental cognition 
can translate the willingness to buy biopesticides into actual application 
behavior. Another novel finding is also noteworthy from the perspective 
of the different roles of land size between service purchasers and non- 
purchasers. For purchasers, there is a positive linear relationship be-
tween land size and biopesticide adoption, while an inverted U-shaped 
relationship for service non-purchasers. Combined with the findings of 
Qiu and Luo (2021) and Qian et al. (2022), the probable cause is that 
farmers are limited by labor and capital in agricultural production, 
though managing larger farms helps to create economies of scale and 
apply for subsidies. On the contrary, purchasing SAS can make up for the 
labor and capital (i.e., plant protection machinery) demands of applying 
biopesticides. 

5.3. Impacts of SAS on biopesticide adoption 

Based on the ESP model, the average treatment effect on the treated 
(ATT) is estimated in Table 4, which reveals the effect of SAS purchase 
on biopesticides adoption. As shown in Table 4, the ATT of service 
purchasers is 0.308, denoting that the SAS generates a 30.8% increase in 
the probability of biopesticides adoption. Moreover, we also show the 
marginal effect estimated by the Probit model in the lasted column of 
Table 4. Different from the ATT, the marginal effect of SAS on bio-
pesticides adoption is only 0.162, indicating the underestimated impact 
without addressing self-selection bias. 

In addition, we also conduct two robustness checks by the methods of 
propensity score matching (PSM) and treatment effect model (TEM) to 
test the robustness of our main findings. The ATTs estimated by PSM are 
0.302 in 2020 and 0.213 in 2021, respectively, while the ATT calculated 
by TEM is 0.394. Although these estimates are biased for the reasons of 
ignoring the unobserved factors and heterogeneous features between 
SAS purchasers and non-purchasers, the positive and significant effects 
synthetically verify our theoretical hypothesis above. In the interest of 
space, we report the specific results of two robustness checks in Ap-
pendix D. 

5.4. Further discussion 

This section will further shed some light on the heterogeneous 

Table 3 
Determinants of SAS purchase and its impact on Biopesticide adoption.  

Variables  Biopesticide adoption 

Selection Purchasers Non- 
purchasers  

(1) (2) (3) 

Age − 0.001 (0.004) 
− 0.009 (0.004) 
** 0.008 (0.007) 

Gender − 0.143 (0.115) − 0.059 (0.138) − 0.057 (0.238) 

Education 0.008 (0.003) 
** 

0.024 (0.011) 
** 

0.019 (0.017) 

Health − 0.045 (0.034) − 0.033 (0.035) 0.055 (0.054) 

Risk attitude 0.052 (0.066) 
0.148 (0.069) 
** 0.082 (0.034)** 

Time preference 0.026 (0.049) 
0.183 (0.053) 
*** 0.005 (0.084) 

Environmental attitude  0.139 (0.069) 
** 

0.298 (0.115) 
*** 

Income 0.054 (0.018) 
*** 

0.034 (0.035) 0.019 (0.043) 

Subsidy 0.011 (0.015) 
0.026 (0.013) 
** 0.012 (0.019) 

Agricultural labor − 0.039 (0.043) 0.042 (0.047) 0.162 (0.067)** 
Cooperative member 0.089 (0.051)* 0.388 (0.430) − 0.040 (0.316) 

Land 0.648 (0.119) 
*** 

0.101 (0.044) 
** 

0.656 (0.144) 
*** 

Land2 − 0.110 (0.018) 
*** 

− 0.015 (0.023) − 0.066 (0.019) 
*** 

Land fragmentation 
− 0.091 (0.050) 
* 0.009 (0.053) − 0.033 (0.045) 

Crop variety YES YES YES 
Region YES YES YES 
Year YES YES YES 

Constant 1.227 (0.524) 
** 

− 0.635 (0.584) − 1.910 (0.843) 

Services network (IV) 
2.327 (0.144) 
***   

ρ1  
0.141 (0.068) 
**  

ρ0   0.183 (0.111) 
Log pseudo-likelihood − 1918.922 
LR test of indep. Eqns. (ρ1 

= ρ0) 
χ2 (2) =13.66, Prob > χ2 = 0.016 

Observations 3143 

Note: Standard errors clustered at the household level are shown in parentheses. 
*** p < 0.01. ** p < 0.05. * p < 0.1. ρ0 and ρ1 measure the extent to which SAS 
influences the biopesticide adoption decision of purchasers and non-purchasers, 
respectively. 
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influence of SAS purchase on different purchasers and explore the po-
tential channels, through which SAS affects the biopesticides adoption 
decisions of farmers. Put differently, the analyses for the heterogeneous 
and mediating effects of some key variables are conducted as follows: 

5.4.1. Heterogeneous effects of SAS 
As previously mentioned, we have reported that the education, 

cooperative member, and land size variables can affect the farmers’ 
decisions of SAS purchase. Now, we also want to understand whether the 
effects of SAS on biopesticide adoption vary by these three variables. As 
shown in the fourth column of Table 5, the treatment effects (ATT) of 
SAS are all positive and significantly different across subgroups of ed-
ucation, cooperative member, and land size, since the 95% confidence 
intervals for different subgroups are non-overlapping. Overall, these 
results denote that the effects of SAS on biopesticide adoption are het-
erogeneous for different groups of farmers. 

Considering education, we found that the ATTs increase with the 
number of years of schooling. The ATT for farmers with primary school 
education is 0.258, while the ATTs for farmers with junior high school 
and high school education are 0.306 and 0.363, respectively. This is 
likely because the high-educated farmers always have a better ability to 
process information and adjust production and input plans according to 
information processing results, therefore, they are more likely to apply a 
new technology (i.e., biopesticides) introduced by SAS (Lu et al., 2021; 
Sun et al., 2018). As regards cooperative members, some related studies 
have shown that joining agricultural cooperatives can provide increase 
farmers’ productivity by providing agricultural production guidance 
and cheaper agricultural inputs (Candemir et al., 2021; Lin et al., 2022; 
Sun, 2017). Under the joint impact of cooperatives, the farmers who 

purchased SAS are more likely to apply biopesticides, which is in line 
with the results in Table 5. 

Based on previous studies, farmers with different land scales may 
present various demands for SAS (Qiu and Luo, 2021; Qian et al., 2022). 
Following Lin et al. (2022), farmers were divided into three subgroups 
according to the size of the land scale in Table 5, and related findings 
display that the impact of SAS on biopesticide application is illustrated 
as an inverted U-shaped relationship. Compared with small- and large- 
scale farmers with ATTs of 0.304 and 0.237, medium-scale farmers 
benefit more from SAS, where the ATT is 0.401. A possible explanation 
can be that small farmers grow grain mainly for their own consumption 
and cannot bear the additional cost of biopesticides, while large-scale 
farmers may self-apply biopesticides for fewer unit costs and more 
technology subsidies (Sun et al., 2018). 

5.4.2. Potential channels 
To verify the potential channels mentioned in the theoretical 

framework, we further analyze mediating effects proposed by Alan et al. 
(2018), and display the specific results in Table 6. The percentage 
mediated denotes the degree the influence is mediated through the po-
tential channels, while a bigger value means the more effective channels 
(Lin et al., 2022). 

Besides the production service, the SAS sometimes provides new 
crop varieties or techniques to farmers, where accompanied by training 
or popularization services (Deng et al., 2020; Lu et al., 2021). Since the 
Chinese government supplies the subsidy of biopesticide to SAS 

Table 4 
Treatment effects of SAS purchase on Biopesticide adoption.  

ESP model Probit model PSM TEM 

Mean outcomes ATT Marginal effect ATT2020 ATT2021 ATT 

Purchasers Counterfactuals 

0.37 0.062 0.308*** 0.162*** 0.302*** 0.213*** 0.394*** 
(0.006) (0.001) (0.006) (0.015) (0.064) (0.049) (0.034) 

Note: Standard errors are shown in parentheses. *** p < 0.01. ** p < 0.05. * p < 0.1. 

Table 5 
Impact of SAS on Biopesticide (BP) adoption across education, cooperative 
member, and land size.  

Categories Mean outcomes ATT [95% Cof. 
Interval] 

SAS1-BP1 SAS0-BP1 

Education 

Primary school 0.327 
(0.011) 

0.069 
(0.004) 

0.258 
(0.011)*** 

[0.236, 0.280] 

Junior high 
school 

0.368 
(0.009) 

0.062 
(0.002) 

0.306 
(0.009)*** 

[0.288, 0.324] 

High school 
0.417 
(0.011) 

0.054 
(0.003) 

0.363 
(0.012)*** [0.340, 0.385] 

Cooperative member 

No 0.201 
(0.026) 

0.091 
(0.007) 

0.110 
(0.027)*** 

[0.056, 0.164] 

Yes 0.374 
(0.006) 

0.062 
(0.001) 

0.312 
(0.006)*** 

[0.300, 0.324] 

Land size 

Small (0–10 mu) 
0.359 
(0.007) 

0.055 
(0.001) 

0.304 
(0.007)*** [0.291, 0.317] 

Medium (10–30 
mu) 

0.472 
(0.018) 

0.071 
(0.006) 

0.401 
(0.019)*** 

[0.364, 0.439] 

Large (>30 mu) 0.350 
(0.018) 

0.114 
(0.009) 

0.237 
(0.020)*** 

[0.197, 0.276] 

Note: Standard errors are shown in parentheses. *** p < 0.01. ** p < 0.05. * p <
0.1. SAS1-BP1 and SAS0-BP1 are the predicted probabilities of biopesticides 
adoption for SAS purchasers in observed and counterfactual contexts, 
respectively. 

Table 6 
Potential mechanisms for the effects of SAS on Biopesticide (BP) adoption.   

Channel 1 Channel 2  

Training or 
popularization 
(1) 

BP 
adoption 
(2) 

Machinery 
substitution 
(3) 

BP 
adoption 
(4) 

SAS 2.129 (0.150)*** 
− 0.022 
(0.016) 

3.608 
(0.127)*** 

0.279 
(0.212) 

Training or 
popularization  

0.013 
(0.014)   

Training or 
popularization 
× SAS  

0.568 
(0.229)**   

Machinery 
substitution    

0.058 
(0.053) 

Machinery 
substitution ×
SAS    

0.373 
(0.098) 
*** 

Control variables YES YES YES YES 
Observations 3143 
Controlled direct 

effects (CDE) 0.376*** 0.310*** 

Natural direct 
effects (NDE) 0.228*** 0.212*** 

Natural indirect 
effects (NIE) 

0.037*** 0.075*** 

Marginal total 
effects (MTE) 

0.265*** 0.287*** 

Percentage 
mediated 86.20% 73.90% 

Note: Percentage mediated = (NDE/MTE) × 100%. Standard errors are shown in 
parentheses. *** p < 0.01. ** p < 0.05. * p < 0.1. 
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providers, these providers have a strong incentive to recommend bio-
pesticide to farmers in specialized pest control. As stated by Chen et al. 
(2022) and Lu et al. (2021), the technology popularization provided by 
SAS can significantly reshape farmers’ technology perception of benefit, 
cost, and risk, and then affect the adoption of new technology. Consis-
tent with Table 6, we find that the impact through this channel accounts 
for about 86.2%, while the interaction item between training and SAS is 
positively significant. 

On the other hand, some studies have pointed out that biopesticides 
are sometimes erratic, require multiple applications, and are labor- 
intensive (Damalas and Koutroubas, 2018; Tang and Luo, 2021). How-
ever, if farmers purchase the SAS with mechanical spraying services, 
they may be more likely to apply the biopesticides for the reason of 
machinery substitution. Stated differently, the SAS can stimulate the 
application of biopesticides by reducing labor constraints (Yang et al., 
2013). The last two columns of Table 6 show that the SAS accelerates 
machinery substitution with a significant coefficient (3.608), combined 
with the significant coefficient of the interaction term, the machinery 
substitution finally displays the mediating effects of 73.9%. 

6. Conclusions and policy implications 

Global climate change is aggravating the occurrence of pests and 
diseases, biopesticide application, a component of climate-smart agri-
cultural practices, is viewed as an environmentally-friendly substitute 
for chemical pesticides, especially when pesticide residue is emerging as 
a worldwide issue with a great threat to the ecological environment, 
human health, and food security. Due to the additional cost attached to 
externalities and information insufficiency, the biopesticide application 
willingness of smallholders is depressed at the present stage. Given that 
the specialized agricultural service (SAS) has been viewed as a bridge 
effectively connecting smallholders with major factor markets in China, 
a theoretical framework of whether and how SAS for specialized pest 
control affects farmers’ biopesticide application practices was built in 
this study. We then used the survey data from Jiangsu province of China 
and applied the endogenous switching probit (ESP) model to further 
verify the impact of SAS on farmers’ biopesticide adoption behavior and 
its potential channels. The robustness checks using alternative estima-
tion strategies finally confirmed the ESP results. 

Our study reveals that the SAS purchase can significantly increase 
the probability of biopesticide adoption by 30.8%. Without considering 
the self-selection bias, this probability will drop to 16.2%. The potential 
influence channels through which the SAS promotes the biopesticide 
application are technology popularization (training) and machinery 
substitution resulting from SAS. Moreover, the ESP results suggest that 
the farmers with more educated, higher income, an identity of cooper-
ative member, and less fragmented land are more likely to purchase SAS, 
while an inverted U-shaped relationship between land size and SAS 
purchase is found. Concerning biopesticide adoption, the risk attitude, 
environmental attitude, and land size all present statistically significant 
effects on both the SAS purchasers and non-purchasers. Not only that, 
our results also denote that the effects of SAS on biopesticide adoption 
are heterogeneous, and vary with education level, cooperative member, 
and land size. Put differently, these effects are greater if a farmer is more 
educated or a cooperative member, while they increase first and then 
decrease with the expansion of land scale. 

In addition to providing services of expertise and farm machinery, 
our empirical results reveal that SAS can significantly promote the 
adoption of CSAPs such as biopesticides. Hence, our study not only 
provides a new idea for the promotion of biopesticides, but also further 
confirms the crucial role of SAS in effectively connecting smallholders 
with agricultural modernization production. Some important implica-
tions for policymakers are vigorously supporting the development of 
SAS, while viewing it as a complement to the public extension depart-
ment in biopesticide promotion activities, and strengthening its role in 
technical training (popularization) and the supply of agricultural 

machinery. Besides the above mentioned, the policy instruments, such 
as subsidy for biopesticide and policy-based insurance, should be tilted 
towards both appropriate land & service management subjects and 
cooperative organization, when the land size and cooperatives 
contribute a lot to SAS development and biopesticide promotion. 

What is noteworthy is that our findings are highly relevant to other 
developing countries, such as Africa and Southeast Asia, where the 
agricultural sector is mainly composed of smallholders and the markets 
of SAS are emerging. This empirical study is expected to provide a basis 
for further research about the influences of SAS on biopesticide pro-
motion in developing areas. Furthermore, the attempt in this line may 
accelerate the growth of biopesticide global market share, which con-
tributes to climate change adaptation, agricultural sustainable devel-
opment, and food safety. However, due to some insuperable problems in 
the survey, this study did not subdivide the specific types and usage 
amount of biopesticides, and only the average effect of SAS on the 
application of biopesticides could be estimated. This deficiency needs to 
be eliminated by future research. 
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