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1 |  INTRODUCTION

Calamitous weather, such as excessive precipitation during the crop- growing and harvest sea-
sons, has drawn considerable interest in the literature under the backdrop of climate change. An 
increasing amount of evidence has shown that the increased frequency of calamitous weather 
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Abstract
Stable agricultural production has been substantially 
challenged by increasingly frequent calamitous weather 
conditions. For winter wheat, continuous precipitation 
during the harvest season is particularly detrimental. This 
study utilises a county- level panel dataset of agricultural 
production in China for the period of 1998–2016 to evalu-
ate the impact of continuous precipitation on the downside 
risk of winter wheat yield. Results show that the continu-
ous precipitation during the harvest season remarkably 
increases the downside risk of winter wheat yield. At the 
same time, the progressive adoption of harvest machinery 
in recent decades has effectively mitigated the downside 
risk of winter wheat yield driven by continuous precipita-
tion. The mitigation effects of harvest mechanisation are 
more pronounced for plain areas with better- developed 
transportation infrastructure.
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exposes crop production to more severe risks than changes in mean climate, negatively affecting 
crop yields and food security (McCarl et al., 2008; Taraz, 2023; Urban et al., 2015). Not only can 
calamitous weather during the growing season affect crop yields, but those during the harvest 
season can also adversely affect crop yields, especially when calamitous weather prevents timely 
harvest (Amonoo, 2013; Gobin, 2018). A common cause of delayed crop harvest is excessive pre-
cipitation, which may impede field accessibility and cause grains to rot in the field, resulting in 
unsalvageable yield losses (Eck et al., 2020; Pelka et al., 2015; Van der Velde et al., 2011).

Risk management has become one of the highest priorities in the agricultural sector. 
The key objectives of the current agricultural policies include reducing the risk of agri-
cultural production. Given that calamitous weather is likely to become more frequent 
(IPCC, 2019), researchers must explore strategies to mitigate the risks to grain production 
caused by calamitous weather and thus ensure global food security. Lobell and Field (2007) 
revealed that some impacts of calamitous weather may be offset by technological advance-
ment. In terms of the effectiveness of adaptive strategies, some studies have examined the 
impact of these strategies on land values or average crop yields (Di Falco et al., 2011; Kien 
et al., 2023; Mendelsohn et al., 1994). Their effectiveness in risk management has also been 
explored (Huang et al., 2015; Issahaku & Abdulai, 2020; Wang et al., 2021). However, these 
studies primarily focussed on the mitigating effects of farm- level adaptive strategies in 
the preplanting and crop- growing seasons, and scant attention has been paid to the crop 
harvest stage.

Existing studies have shown that agricultural mechanisation can reduce weather- related 
risks during the harvest season because the timeliness of mechanical operations can facili-
tate quicker harvest and reduce weather- related yield losses (Belton et al., 2021; Hignight & 
Watkins, 2007; Just & Pope, 1978). For example, Moussa (2008) showed that combined har-
vesters could save 94 h per hectare compared with manual harvesting, shortening the harvest 
season by 4 days or more (Cao & Zhang,  2019; Gao & Song,  2014). Therefore, mechanised 
harvesting could reduce the risk of exposure to calamitous weather, especially continuous pre-
cipitation during the harvest season (Hignight & Watkins,  2007). However, to what degree 
harvest mechanisation mitigates the risk exposure of crop yield caused by calamitous weather 
is unknown. Answers to this question can provide valuable insights for designing effective 
adaptation policies.

This study investigates whether agricultural mechanisation helps mitigate weather- 
related risks during the harvest season. Specifically, we are interested in the mitigation ef-
fect of agricultural machinery on the downside risk caused by the continuous precipitation 
during the harvest season of winter wheat in China.1 In particular, we focus on the skewness 
of crop yield distribution, commonly used to capture downside risk exposure (Di Falco & 
Chavas, 2009; Huang et al., 2015; Issahaku & Abdulai, 2020). Downside risk refers to the 
yield located at the low tail of the crop yield distribution (Kim et  al.,  2014). Based on a 
county- level panel dataset of agricultural production in combination with daily weather 
observations during the period of 1998–2016, our investigation shows that continuous pre-
cipitation during the harvest season of winter wheat remarkably increases the downside 
risk of winter wheat yield.

We examine the potential mitigation effect of harvest mechanisation on the downside risk of 
winter wheat yield. Our results suggest that mechanised harvesting considerably mitigated the 
downside risk of winter wheat yield caused by continuous precipitation. On average, machin-
ery usage during harvest at 2.4 kW/ha (1 HP = 0.75 kW; HP refers to mechanical horsepower) 
could fully offset the adverse impacts of continuous precipitation. We further show that the 

 1The Expert Team on Climate Change Detection and Indices recommends consecutive wet days (CWD) as an indicator for extreme 
precipitation. It is the maximum number of consecutive days when precipitation is ≥1 mm (http:// etccdi. pacif iccli mate. org). This 
indicator is usually called ‘continuous precipitation’ in China (Li et al., 2018).
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mitigation effect is spatially heterogeneous and more pronounced for plain areas with better- 
developed transportation infrastructure.

This study makes three major contributions to the existing literature. First, to our 
knowledge, this is the first empirical analysis to estimate how continuous precipitation 
during the harvest season affects the downside risk of winter wheat yield. This work differs 
from previous studies that explored the adverse impacts of changes in growing season pre-
cipitation on average winter wheat yield (Chen et al., 2019; Gammans et al., 2017; McCarl 
et al., 2008). Substantial granular county- level data in the analysis provide further insights 
into the relationship between calamitous weather and winter wheat yield risk. Second, 
our findings contribute to the literature on the impacts of agricultural mechanisation on 
agricultural production by providing evidence of the efficacy of harvest mechanisation as 
an adaptation to calamitous weather. It raises awareness of the potential benefits of agri-
cultural mechanisation in terms of risk management and assists them in making informed 
decisions on the use of machinery. Third, our findings on the different mitigation effects 
of harvest mechanisation provide valuable insights for policymakers. These insights un-
derscore the imperative of prioritising public support for agricultural mechanisation in re-
gions that lack developed transportation infrastructure to cope with the negative impacts 
of calamitous weather.

This study is organised as follows: Section 2 reviews the existing literature. Section 3 pro-
vides some background information about China's wheat production and agricultural mech-
anisation. Section 4 introduces the conceptual framework and empirical strategy. Section 5 
describes the data, and Section 6 discusses the empirical estimates, followed by heterogeneity 
analysis. Section 7 presents the conclusions and policy implications of the study.

2 |  LITERATU RE REVIEW

The adverse impacts of climate change on crop yield have been extensively investigated in the 
existing literature (Gammans et al., 2017; Lobell & Field, 2007; Schlenker & Roberts, 2009; 
Wing et  al.,  2021). These studies have primarily concentrated on the impacts of predicted 
changes in the average level of climatic variables, such as temperature and precipitation, on av-
erage crop yields (Antón et al., 2012). A major challenge faced by agricultural production is the 
increased frequency and intensity of calamitous weather resulting from climate change. For 
example, Lesk et al. (2016) estimated that global cereal production was reduced by 9%–10% on 
average from the year 1964 to 2007 due to extreme heat and drought.

The increasing challenge of climate change to agricultural production has stimulated 
research on the relationship between calamitous weather and yield risk. Earlier studies 
(e.g. McCarl et  al.,  2008; Poudel & Kotani,  2013) used the mean–variance analysis de-
veloped by Just and Pope  (1978) to examine the impacts of weather variables on yield 
variability. A key finding is that about one- third of yield variability can be attributed to 
global climate variability (Ray et al., 2015). Given that yield variance cannot distinguish 
between unanticipated favourable and unfavourable events, recent studies (e.g. Di Falco & 
Chavas, 2009; Issahaku & Abdulai, 2020; Wang et al., 2021) have used the moment- based 
approach proposed by Antle  (1983) and used yield distribution skewness as a proxy for 
downside risk. Huang et al. (2015) used the third central moment of rice yield distribution 
to capture downside risk and demonstrated that drought and f lood increased the down-
side risk of rice yield.

One major weather- related crop yield risk is excessive precipitation during the grow-
ing season. For example, Zampieri et  al.  (2017) argued that excess moisture contributes 
to wheat yield anomalies in major wheat- producing countries, such as China and India. 
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The sensitivity of crop yield to extreme humidity varies across growth stages (Urban 
et al., 2015), with the impact of precipitation during the harvest season being a particular 
concern (Amonoo,  2013). Excessive precipitation during the harvest season affects crop 
yield through three main channels. First, the wet conditions caused by excessive precipita-
tion increase the incidence of pests and diseases (Hatfield et al., 2011). Second, a wet envi-
ronment results in an early break of crop seed dormancy and induces preharvest sprouting 
(Kulwal et al., 2012). Third, excessive and continuous precipitation hinders field accessibil-
ity and timely harvesting (Eck et al., 2020). Moreover, the increased excessive precipitation 
under climate change is projected to increase crop yield risk during harvest season (Van der 
Velde et al., 2011).

Adaptation plays a vital role in reducing crop yield losses caused by calamitous weather 
(Ortiz- Bobea, 2021). Without accounting for the influence of adaptation, one may overesti-
mate the damage from global warming (Mendelsohn & Massetti, 2017). Across the world, the 
agricultural sector has been able to adapt to climate change with region- specific adaptation 
systems in various ways, such as shifting the spatial distribution of crops (Cho & McCarl, 2017), 
changing crop planting dates (Cui & Xie, 2021), adjusting agricultural input usage (Chen & 
Gong, 2020) and planting cover crops (Won et al., 2023).

Some studies have used economic modelling approaches, such as computable general 
equilibrium (CGE) and integrated assessment models (IAMs), to capture the intricate socio- 
economic feedback from the impacts of weather changes on crop yield (Calvin & Fisher- 
Vanden, 2017; Ciscar et al., 2018). On the basis of the integrated models of economy, climate 
and crop yield, Nelson et al. (2014) found that economic responses to price increases that are 
caused by climate shocks, such as adjustments in management practices, planting area, con-
sumption and international trade, were effective in mitigating the negative impacts on crop 
yields. Specifically, economic responses reduced global crop yield losses due to climate change 
from 17% to 11% while expanding major crop areas by 11%. Both effects, when combined, re-
sulted in a 2% decline in overall production. However, the unavailability of required data often 
impedes the application of these models in practice (Salvo, 2013).

Another strand of literature relies on statistical methods to assess the impacts of specific 
adaptation measures on weather- related production risk, boasting the advantages of un-
certainty quantification and robustness checks, which are crucial for risk analysis (Huang 
et al., 2015; Issahaku & Abdulai, 2020). For example, Wang et al. (2021) used the moment- 
based approach to explore the magnifying effect of insurance participation on crop yield 
risk associated with extreme heat. However, the adaptation capacity of farmers to cope with 
calamitous weather remains limited, underscoring the importance of public interventions 
for adaptation, including weather forecasts, public infrastructure and effective technolo-
gies (Hallegatte et al., 2011).

Agricultural machinery has been widely used in China's agricultural production over 
the past decades due to increasing agricultural labour scarcity (Shi et  al.,  2021; Yang 
et al., 2013). Several researchers investigated the positive impacts of machinery on pro-
duction scale (Qian et  al.,  2022) and agricultural productivity (Benin,  2015; Paudel 
et al., 2019). Increased machinery usage has been suggested to be an adaptive strategy to 
mitigate the potentially disruptive effects of calamitous weather because it can improve 
the timeliness of operations and shorten the crop harvest period (Belton et al., 2021; Just 
& Pope, 1978). Machinery can guarantee a prompt harvest of the first crop and prepare 
the land for the subsequent crop ploughing and sowing. These operations must be com-
pleted in a short period for multicultivation areas, especially when precipitation events 
occur (Pingali, 2007; Verma, 2006). In addition, harvest machinery can mitigate the risk 
caused by unfavourable weather conditions due to timely operations (Belton et al., 2021; 
Hignight & Watkins, 2007).
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3 |  W H EAT PRODUCTION A N D AGRICU LTU RA L 
M ECH A N ISATION IN CH INA

3.1 | Wheat production

China is one of the world's major wheat producers, contributing approximately 18% of the 
world's total wheat production in 2021.2 Maintaining stable wheat productivity in China is 
crucial to ensuring global food security. However, the net profit of wheat production dropped 
from 780 CNY (1 CNY = 0.21 AUD = 0.14 USD) per hectare in 1990 to −75 CNY per hectare 
without subsidy in 2020, resulting in a decline in the wheat- planting area from 31 million ha in 
1990 to 23 million ha in 2020 (see Figure 1). This decline was accompanied by a rapid increase 
in corn planting acreage driven by domestic demand for food, feed and fuel (You et al., 2011). 
Fortunately, technological advancements in production have contributed to recent increases 
in China's wheat production (Fan et  al.,  2012). According to China's National Bureau of 
Statistics, wheat output has increased from 98 million tonnes in 1990 to 134 million tonnes in 
2020, with an average annual growth rate of 1%.

Winter wheat accounts for the majority of wheat production in China. As shown in Figure 1, 
the total planting area of winter wheat in 2020 was 22 million ha, 95% of China's wheat- planting 
area. Moreover, winter wheat output reached 129 million tonnes, 96% of the total domestic 
wheat supply. The average yield of winter wheat has increased from 3.3 tonnes per hectare in 
1990 to 5.8 tonnes per hectare in 2020, which is 30% higher than that of spring wheat.

 2Source: http:// www. fao. org/ faost at/ en/# data.

F I G U R E  1  Wheat production in China. Data are available from China's National Bureau of Statistics.
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3.2 | Impact of continuous precipitation on winter wheat production

Winter wheat yield is highly vulnerable to continuous precipitation because the harvest sea-
son (May–June) coincides with the rainy season (April–September) in China. Continuous pre-
cipitation during the harvest season is typically characterised by low temperature, reduced 
daylight and waterlogging, which can cause winter wheat ears to germinate, grains to fall off 
and crops to become mouldy and rotten (Kulwal et al., 2012; Li et al., 2018). Furthermore, the 
wet conditions caused by excessive precipitation increase the chance of disease infestation in 
winter wheat (Hatfield et al., 2011). Hence, continuous precipitation has been recognised as a 
critical factor causing considerable risk to winter wheat yield. Given the importance of winter 
wheat in China's wheat output, identifying the impact of continuous precipitation on winter 
wheat yield losses can inform decisions about investment to mitigate weather- related risk and 
ensure a stable domestic food supply.

Recent studies have documented that the time intervals between winter wheat and suc-
ceeding crops have been remarkably shortened over the past few decades (Chen et al., 2009; 
Gao & Song, 2014). The trends observed in our study using site- level cropping data from the 
National Meteorological Information Center of China are consistent with these findings. In 
Figure S1, we plot the changes in time intervals between winter wheat maturity dates and suc-
ceeding summer corn planting dates (Panel A) or succeeding rice transplanting dates (Panel 
B). Both plots show that the time intervals were shortened for 1992–2013. Such changes might 
be driven by the efficiency improvement of harvest mechanisation or adaptations to avoid 
adverse weather.

3.3 | Agricultural machinery use in China

China has experienced rapid growth in agricultural mechanisation over the past decades. 
Panel a of Figure 2 shows that the total power of agricultural machinery, a proxy for the level 
of agricultural mechanisation, grew from 287 million kW in 1990 to 604 million kW in 2003. 
Since the launch of China's Promotion of Agricultural Mechanisation in 2004, government 
subsidies for purchasing agricultural machinery increased from 70 million CNY in 2004 to 
27.7 billion CNY in 2020, stimulating the rapid growth of agricultural machinery. The total 
power of China's agricultural machinery grew from 640 million kW in 2004 to a peak of 1.1 bil-
lion kW in 2015 and subsequently levelled off at around 1 billion kW.

The rapid growth of agricultural machinery was accompanied by a considerable struc-
tural evolution. Panel b of Figure 2 shows that large-  and medium- sized agricultural ma-
chinery experienced faster growth, overtaking small tractors in a short period. Specifically, 
the most recent data from the China Agriculture Statistical Report show that large-  and 
medium- sized machinery increased from 28 million kW in 1990 to 224 million kW in 2017, 
an eightfold increase. Meanwhile, the growth of small farm machinery has largely pla-
teaued in recent decades.

Given the increased adoption of agricultural machinery, China's overall mechanisation 
rate for ploughing, sowing and harvesting, an essential indicator of the level of mechanisa-
tion, has increased remarkably in recent years. According to the Ministry of Agriculture 
and Rural Affairs of China, the overall mechanisation rate of crops has increased from 22% 
in 1990 to 71% in 2020. Wheat has the highest overall mechanisation rate, reaching about 
97% in 2020, considerably higher than rice (84%) and corn (90%). In particular, the rate of 
tractor ploughing, machine sowing and machine harvesting in wheat production in 2020 
reached 99.9%, 93.2% and 97.5%, respectively, almost achieving the complete mechanisa-
tion of wheat production.

 14678489, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1467-8489.12545 by Z

hejiang U
niversity, W

iley O
nline L

ibrary on [20/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    | 7WEATHER- RELATED YIELD RISK AND MECHANISATION

F I G U R E  2  Agricultural mechanisation in China. Data for Panel a are from the China Statistical Yearbook 
1990–2022 and data for Panel b are from the China Agriculture Statistical Report 1990–2018.
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4 | CONCEPTUAL FRAMEWORK AND EMPIRICAL STRATEGY

4.1 | Conceptual framework

In this study, we use the moment- based model proposed by Antle (1983) to capture downside 
risk and investigate the risk mitigation effects of harvest mechanisation. This model provides a 
flexible representation of the relationship between input factors and crop yield under produc-
tion uncertainty (Di Falco & Chavas, 2009). We assume that the crop production function can 
be written as follows:

where y represents crop yield, and f1(x,�) = E(y| x) is the corresponding first central moment 
(i.e. mean). x denotes the exogenous weather variables, and u is an error term that reflects the yield 
distribution (net of mean yield). The inclusion of economic input variables into x is discussed in 
the following section. To capture the risk component of crop yield, the higher order moments of 
y are specified as

where f2(x,�) is the second central moment (i.e. the variance), characterising the dispersion of 
crop yield relative to its mean; f3(x, �) is the third central moment (i.e. the skewness), measuring 
the degree of asymmetry of the crop yield distribution around its mean. Given that variance as-
signs equal weight to observations on both sides of the mean and may bias the measure of risk 
(Roseta- Palma & Sağlam, 2019), we use the skewness of the crop yield to measure downside risk in 
this study. A negative skewness implies that the crop yield is more likely to be below the expected 
crop yield. A decrease in crop yield skewness, or more precisely, an increase in negative skewness, 
implies an increase in downside risk.

The impact of calamitous weather, as represented by continuous precipitation during the 
harvest season, is of particular concern on the skewness of crop yield. The adverse impact 
may prompt farmers to adopt technologies that can reduce the probability of crop failure. As 
discussed above, mechanised harvesting can reduce the risk of exposure to winter wheat yield 
due to continuous precipitation. Accordingly, we assume in Equation (3) that the error term u 
is a function of mechanised harvesting M and use it to model the relationship between harvest 
machinery use and weather- related crop yield skewness.

4.2 | Empirical strategy

This section presents the econometric specifications for identifying the impact of calamitous 
weather on the downside risk of winter wheat yield. On the basis of our conceptual framework, 
we first construct the mean yield function as follows:

where Ygt denotes the average winter wheat yield (per hectare) in county g and year t; �s are the pa-
rameters to be estimated; CPgt represents the amount of continuous precipitation during the win-
ter wheat harvest season. Wgt represents a vector of weather variables, including the average daily 
maximum temperature (Tmax), minimum temperature (Tmin), solar radiation and the sum of daily 
precipitation for fall, winter and spring. In Equation (4), only weather variables are incorporated 

(1)y = f1(x,�) + u,

(2)u2 = f2(x,�) + �,

(3)u3 = f3(x, �) + �,

(4)Ygt = �0 + �1CPgt + �2Wgt + �3Tt + cg + ugt,
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because weather changes may affect crop yield through their impacts on various input uses. In 
particular, including input factors may partially absorb the overall impact of weather variables on 
crop yield (Chen & Chen, 2018). Following Chen et al. (2016) and Miller et al. (2021), we use a linear 
time trend Tt to capture exogenous technological advancement driven by research and develop-
ment (R&D). cg is the county fixed effect. ugt is a mean zero, potentially heteroskedastic error term.

We use the Jarque–Bera test to test the normality of winter wheat yield distribution (Jarque & 
Bera, 1980, 1987) and the D'Agostino test to test whether the winter wheat yield exhibits skewness 
(D'Agostino et al., 1990). All test results are reported in the ‘Results and Discussions’ section.

We then estimate the variance and skewness functions using the same set of regressors as in 
Equation (4). The models are specified as follows:

where ûgt is the estimated error term from Equation (4), and 
(
ûgt

)2
 in Equation (5) represents the 

yield variance, and 
(
ûgt

)3
 in Equation (6) represents the yield skewness. �t denotes the year fixed 

effects, which helps account for unobserved factors that are common across counties in a given 
year (e.g. drought- tolerant seed application and policy shocks). �s and �s are the parameters to be 
estimated, and �gt and �gt are error terms. This study focusses on the impact of continuous precip-
itation on the skewness of winter wheat yield.

We further explore the mitigation effect of mechanised harvest on continuous precipitation 
by including the interaction between these two variables as follows:

Augmenting Equation (6), we use Mgt, the machinery usage per hectare during the winter 
wheat harvest season, to capture the impacts of harvest mechanisation. Here, �2 is the key 
coefficient of interest, which is expected to be positive under the conjecture that harvest mech-
anisation mitigates the downside risk of winter wheat yield caused by continuous precipitation.

Given that the error terms ugt, �gt, �gt and �gt may be heteroscedastic, we use the approach 
of weighted least squares to estimate the mean function with weights given by the inverse of 
the predicted variance of the error terms. We then estimate variance and skewness functions 
with robust standard errors to correct for heteroscedasticity. See Di Falco and Chavas (2006) 
for details on this estimation procedure.

In addition, Auffhammer et al. (2013) and Cui (2020) argued that error terms, such as �gt, �gt 
and �gt, might correlate within counties and across years; therefore, we cluster all regression 
standard errors at the county and province- by- year levels to capture potential serial and spatial 
correlations in the error structure. This two- way clustering strategy allows serial correlation 
over the years within a county and spatial correlation across counties within a province–year 
combination (Cameron et al., 2011). We also conduct the Hausman test to choose between the 
fixed and random effects model.

5 |  DATA

5.1 | Agricultural data

We assemble an unbalanced panel dataset of county- level agricultural production and fine- 
scale weather in China from the year 1998 to 2016. The county- specific winter wheat yield for 

(5)
(
ûgt

)2
= �0 + �1CPgt + �2Wgt + �t + cg + �gt,

(6)
(
ûgt

)3
= �0 + �1CPgt + �2Wgt + �t + cg + �gt,

(7)
(
ûgt

)3
= �0 + �1CPgt + �2CPgt ×Mgt + �3Wgt + �t + cg + �gt.
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10 |   WANG et al.

the period of 1998–2016 was obtained from the Institute of Agricultural Information at the 
Chinese Academy of Agricultural Science (CAAS). We focus on eight major winter wheat- 
planting provinces, that is Hebei, Shanxi, Shandong, Shaanxi, Jiangsu, Anhui, Henan and 
Hubei. These provinces accounted for 83% of China's winter wheat- planting areas during the 
sample period.

To our knowledge, data on county- level machinery use for various crops are not available. 
However, data on aggregated machinery usage in each county can be obtained from CAAS, 
and that of provincial crop- specific machinery inputs per hectare (in the period of 1998–2016) 
is available from the China Agricultural Product Cost and Revenue Compilation. This study 
tackles the above challenge (i.e. missing data on county- level crop- specific machinery use) by 
designing a maximum entropy procedure provided in Appendix S1, using the above- mentioned 
machinery data.

Our results show that the differences between yearly observed aggregate machinery usage 
and those recovered by the maximum entropy procedure across counties are less than 1%. 3 On 
the basis of the obtained data on total machinery use in the winter wheat growing season, we 
calculate the machinery use in the winter wheat harvest season. According to Xue et al. (2020), 
agricultural mechanisation can be categorised into ploughing, sowing, harvesting, crop pro-
tection and irrigation with weights of 0.22, 0.20, 0.22, 0.18 and 0.18, respectively. Accordingly, 
machinery usage during the winter wheat harvest season is 22% of the total agricultural ma-
chinery usage during the winter wheat growing season. The summary statistics for these quan-
tities are shown in Table 1.

 3Detailed comparison is available upon request.

TA B L E  1  Summary statistics.

Variables N Mean SD Min Max

Winter wheat yield (tonne/ha) 15,416 4.537 1.827 0.006 12.031

T
min

: fall (°C) 15,416 7.174 2.741 - 6.179 14.821

T
min

: winter (°C) 15,416 −2.931 3.776 −20.623 5.037

T
min

: spring (°C) 15,416 9.366 2.012 −1.173 13.831

T
max

: fall (°C) 15,416 17.054 2.164 0.764 23.338

T
max

: winter (°C) 15,416 6.284 2.931 −7.378 13.841

T
max

: spring (°C) 15,416 20.473 2.019 2.720 25.592

Precipitation: fall (cm) 15,416 7.123 4.850 0 34.630

Precipitation: winter (cm) 15,416 4.759 6.017 0 45.550

Precipitation: spring (cm) 15,416 14.218 9.502 0.170 95.730

Solar radiation: fall (h) 15,416 5.180 1.124 1.268 8.285

Solar radiation: winter (h) 15,416 4.671 1.047 0.687 7.680

Solar radiation: spring (h) 15,416 6.595 1.314 2.203 9.605

Continuous precipitation (cm) 15,416 0.815 2.499 0 45.270

Harvest machinery (kW/ha) 15,416 1.936 0.870 0.277 5.492

Fertilizer (tonne/ha) 15,416 0.360 0.098 0.118 0.660

Labour (day/ha) 15,416 99.269 35.051 42.750 214.050

Ratio of irrigated area (%) 15,360 41.115 18.686 3.705 98.927

Note: The number of observations for the ratio of irrigated area is reduced due to missing values.
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    | 11WEATHER- RELATED YIELD RISK AND MECHANISATION

5.2 | Weather data

Weather data are collected from the China Meteorological Data Sharing Service System, which 
records the daily maximum, minimum and average temperatures, precipitation and solar ra-
diation data from 820 weather stations for the period of 1998–2016. Following the common 
practice in the literature (Chen & Gong, 2020; Deschenes & Greenstone, 2007; Yi et al., 2016), 
we spatially interpolate the climate data from the weather stations to individual counties using 
inverse- distance weighted method, with a grid spacing of 500 m. The average across all grids 
located in a county was assigned to that county.

To locate the harvest season for winter wheat in each region, we obtained the planting and har-
vest dates of winter wheat across regions from the Major World Crop Areas and Climate Profiles 
by the US Department of Agriculture. Overall, the growing season for winter wheat is between 
September and June of the following year, and the harvest season spans May and June.

Mao and Wei  (2015) suggested that continuous precipitation occurs when precipitation 
lasts for 3 or more days (precipitation ≥ 0.1 mm in 24 h) with the accumulated precipitation 
exceeding 40 mm in North China or when precipitation lasts for 5 or more days (precipita-
tion ≥ 0.1 mm in 24 h) with the accumulated precipitation exceeding 50 mm in South China 
(such as the Huanghuai, Jianghuai and Jianghan regions). Accordingly, our analysis uses the 
amount of continuous precipitation during the winter wheat harvest season in each county as 
the primary measurement of continuous precipitation in our analysis. As shown in Figure S2, 
the amount of continuous precipitation during the winter wheat harvest season has experi-
enced a fluctuating upward trend from the year 1992 to 2016. The alternative indicator of the 
frequency of continuous precipitation during the winter wheat harvest season also exhibits a 
steadily increasing trend in the same period.

This study uses seasonal weather variables to capture the relationship between weather 
and winter wheat yield. While various types of climatic/weather variables have been used to 
examine the impacts of climate/weather on crop yields, including temperature bins (Gammans 
et al., 2017; Schlenker & Roberts, 2009) and degree–day variables (Chen et al., 2016; Miller 
et al., 2021), the rationale for utilising seasonal weather variables is grounded in the unique 
nature of the winter wheat growing season, which spans from September to June of the fol-
lowing year. In contrast to ‘spring’ crops, the dormancy period of winter wheat breaks up spe-
cific stages that are normally continuous in time, resulting in distinct within- season weather 
effects that must be carefully considered in model specifications. Furthermore, using whole- 
season precipitation to measure adequate water availability for crops has limitations (Ortiz- 
Bobea, 2021). For example, while two seasons might record identical total precipitation, one 
could be much drier due to different temperature conditions. This difference emphasises the 
importance of the amount of precipitation throughout the growing season and the timing of 
precipitation. The primary way to address this concern is to use the seasonal weather variables 
for the year (Ortiz- Bobea, 2021).

As suggested by Tack et al. (2015) and Chen et al. (2019), we divide the winter wheat growth 
cycle into three seasons: fall (from wheat planting to November), winter (from December to 
February of the following year) and spring (from March to wheat maturity). To assess the 
impact of temperature changes on winter wheat yield, we use the seasonal average of daily 
minimum temperature 

(
Tmin

)
 and maximum temperature 

(
Tmax

)
 because the response of crop 

yield to temperature changes is likely to be driven by the relative warming of minimum and 
maximum temperatures (Lobell & Ortiz- Monasterio, 2007; Peng et al., 2004). Given the high 
correlation between Tmin, Tmax, solar radiation and precipitation (Chen et  al.,  2019; Welch 
et al., 2010), we also include average daily solar radiation and accumulated precipitation for 
the three seasons in the baseline regression.
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12 |   WANG et al.

6 |  RESU LTS A N D DISCUSSIONS

Before presenting our estimation results, we first report some specification testing results. To 
explore the distribution of the winter wheat yield, we use the Jarque–Bera test to examine the 
normality of winter wheat yield. The p- value is lower than 0.01, rejecting the null hypothesis 
that winter wheat yield is normally distributed. This result is confirmed by the D'Agostino 
test, which rejects the null hypothesis of normality at the 1% level of significance because of 
the presence of skewness. Figure S3 in the Appendix reports the distribution of the winter 
wheat yield during the sample period, further demonstrating the left- skewed nature of the 
winter wheat yield. Given that the p- values for the Hausman test of fixed versus random ef-
fects models are all below 0.01 for the mean, variance and skewness functions, the subsequent 
estimations are based on the fixed- effect models.

6.1 | Impact of continuous precipitation on yield skewness

Column (1) of Table 2 reports the mean yield function estimation results based on Equation (4). 
The impacts of weather variables vary across the growing season. Precipitation for each of the 
three seasons and continuous precipitation during the harvest season have significantly nega-
tive impacts on winter wheat yield, consistent with the literature findings (Chen et al., 2019; 
McCarl et  al.,  2008). The weather variables in Column (1) are measured in different units, 
thus hindering the direct comparison regarding the impacts of weather variables on winter 
wheat yield; therefore, we use the per standard deviation (SD) of weather variables to express 
the marginal effects (Welch et al., 2010). Table S1 of the Appendix shows that the most crucial 
driver of winter wheat yield reduction is Tmax in spring. In particular, one unit change in SD of 
continuous precipitation during the winter wheat harvest season reduces winter wheat yield 
by 13.2 kg/ha.

No significant impact of continuous precipitation on winter wheat yield variance is found 
in Column (2) of Table 2. On the surface, this result might suggest that continuous precipita-
tion poses no threat to yield risk. However, we caution that this conclusion can be misleading, 
because variance is a generic indicator of production risk and does not distinguish upside and 
downside risks. Therefore, we further examine the impacts of continuous precipitation on win-
ter wheat yield skewness.

Columns (3)–(5) in Table 2 report the baseline results regarding the impact of continuous 
precipitation on the winter wheat yield skewness. Column (3) only considers continuous precip-
itation during harvest as the sole covariate. The temperature, precipitation and solar radiation 
variables for each season are incrementally included in the regressions reported in Columns 
(4) and (5). All estimation results confirm that continuous precipitation has significantly neg-
ative impacts on the winter wheat yield skewness. The richer model reported in Column (5) 
suggests that a one- centimetre increase in continuous precipitation during the harvest season 
corresponds to a decrease in winter wheat yield skewness by 0.3 units. This finding indicates 
that continuous precipitation during the harvest season considerably increases the downside 
risk of winter wheat yield and the probability of failure in winter wheat yield. Our findings are 
consistent with previous studies that suggest excessive precipitation during the harvest season 
is a major threat to timely crop harvest, which can remarkably increase the risk of crop yield 
(Eck et al., 2020; Pelka et al., 2015).

We then explore the potential heterogeneous impacts of continuous precipitation on winter 
wheat yield skewness across regions based on the results provided in Column (5) of Table 2. 
We use the SD of continuous precipitation for each province to measure the extent to which 
the same variation in continuous precipitation affects yield skewness in different regions. 
The result shows that one SD change in continuous precipitation is associated with a 0.8- unit 
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    | 13WEATHER- RELATED YIELD RISK AND MECHANISATION

reduction in winter wheat yield skewness during the sample period. Lest the aggregate data at 
the national level obscuring heterogeneous impacts of continuous precipitation across regions, 
we report the estimated changes in yield skewness at the provincial level in Figure 3. The re-
sults suggest that Shaanxi, Hubei, Hebei and Anhui are more vulnerable to continuous precip-
itation during the harvest season. In particular, one SD change in continuous precipitation in 
Shaanxi reduces the yield skewness by 1 unit during the sample period. We also notice a small 

TA B L E  2  Regression results for mean, variance and skewness of yield.

Variables

Mean yield Variance of yield Skewness of yield

(1) (2) (3) (4) (5)

Continuous precipitation −0.0060*** −0.0305 −0.3274* −0.2978* −0.3014*

(0.0014) (0.0246) (0.1659) (0.1583) (0.1620)

T
min

: fall 0.0383*** −0.0026 −0.1828 −0.0869

(0.0066) (0.0716) (0.4976) (0.5124)

T
min

: winter −0.0097 0.2063* 1.6297* 1.4739*

(0.0089) (0.1068) (0.8542) (0.8048)

T
min

: spring 0.0147 −0.2531** −2.4607*** −2.4218***

(0.0095) (0.1145) (0.8352) (0.8098)

T
max

: fall −0.0073 0.0343 0.0703 −0.0191

(0.0060) (0.0522) (0.3549) (0.4342)

T
max

: winter 0.0163** −0.0635 −0.9971 −0.7598

(0.0065) (0.1297) (0.8513) (1.0522)

T
max

: spring −0.0353*** 0.1326 1.0944 1.0202

(0.0074) (0.0830) (0.6871) (0.6221)

Precipitation: fall −0.0033*** −0.0167 −0.1036 −0.1011

(0.0008) (0.0121) (0.0883) (0.0919)

Precipitation: winter −0.0100*** 0.0281* 0.1863 0.1843

(0.0015) (0.0163) (0.1214) (0.1177)

Precipitation: spring −0.0021*** −0.0003 −0.0273 −0.0288

(0.0007) (0.0090) (0.0491) (0.0513)

Solar radiation: fall 0.0081 −0.0017 0.2056

(0.0075) (0.0689) (0.6038)

Solar radiation: winter −0.0093 −0.1108 −0.4870

(0.0102) (0.1700) (1.2614)

Solar radiation: spring 0.0441*** 0.0077 0.1539

(0.0084) (0.1096) (0.7344)

Constant 4.3435*** 1.3253 1.3080*** 13.3182** 13.5718*

(0.0858) (1.0287) (0.2028) (5.8049) (7.3117)

County fixed effect Yes Yes Yes Yes Yes

Year effect Yes Yes Yes Yes Yes

Number of observations 15,416 15,416 15,416 15,416 15,416

Note: The standard errors are in parentheses. Standard errors for columns (2)–(5) are clustered at the county and province- by- year 
levels.

***p < 0.01; **p < 0.05; *p < 0.1.
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14 |   WANG et al.

probability of winter wheat failure in Shandong, Jiangsu and Henan, with slight changes in 
continuous precipitation during the harvest season.

In addition, we examine the sensitivity of the baseline results by controlling agricultural 
inputs, including fertilizer, machinery and labour, throughout the winter wheat growth cycle 
to the yield moment function. Although excluding nonweather factors, such as socio- economic 
variables, helps estimate the total marginal effects of weather on winter wheat yield (Chen & 
Chen, 2018), omitting socio- economic variables may lead to bias if these variables are system-
atically associated with the local climate. Given that irrigation may mitigate the detrimental 
impact of weather variables on crop yields (Chen et al., 2016; Cui, 2020), the ratio of practical 
irrigated areas to total planted areas of all crops is used to proxy for farmers' adjustment be-
haviour to weather conditions. As shown in Column (1) of Table S2 in the Appendix, the yield 
mean function results are consistent with the baseline estimates, and the continuous precipita-
tion remarkably increases the downside risk of winter wheat yield in Column (2), in line with 
our main findings.

One potential concern is that the model specification of the mean yield function might 
influence the identification of the relationship between the higher- order moments and contin-
uous precipitation. As discussed in Antle (1983) and Antle et al. (2013), the specification errors 
in the mean yield function might be transmitted to the higher- order moments. Although the R2 
value for the mean yield function in Column (1) of Table 2 is 0.96, we also use the raw moments 
model suggested by Tack et al. (2012) to explore this concern. As shown in Columns (3)–(5) 
of Table  S2, the continuous precipitation effects are statistically significant for all moment 
equations, indicating that our main findings are not sensitive to the model specification of the 
mean yield function.

F I G U R E  3  Winter wheat yield skewness across regions. We use the SD of continuous precipitation for each 
province to measure the extent to which the same change in continuous precipitation affects yield skewness in 
different regions. The dotted black line indicates the marginal effect per SD change of continuous precipitation 
on yield skewness during the 1998–2016 period. The boxes cover the interquartile range and contain black lines 
indicating the median and represent the point estimate. The whiskers, denoted by horizontal black lines, represent 
95% confidence intervals constructed on the basis of the county and province- by- year clustered standard errors.
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    | 15WEATHER- RELATED YIELD RISK AND MECHANISATION

6.2 | Mitigation effect of harvest mechanisation

Table 3 presents the estimation results regarding the mitigation effect of mechanised harvest 
on the winter wheat yield skewness, which is captured by the interaction between continuous 
precipitation and harvest mechanisation. The estimated coefficients, across all specifications, 

TA B L E  3  Mitigation effect of mechanised harvest.

Variables

Skewness of yield

(1) (2) (3)

Continuous precipitation −0.9021*** −0.9106*** −0.9246***

(0.3052) (0.3126) (0.3153)

Continuous 
precipitation × harvest 
machinery

0.2689** 0.2866** 0.2907**

(0.1070) (0.1131) (0.1121)

T
min

: fall −0.1281 −0.0222

(0.4917) (0.5043)

T
min

: winter 1.6288* 1.4148*

(0.8538) (0.7966)

T
min

: spring −2.5156*** −2.4322***

(0.8399) (0.8077)

T
max

: fall 0.0250 −0.0688

(0.3499) (0.4265)

T
max

: winter −1.1101 −0.7958

(0.8587) (1.0514)

T
max

: spring 1.2158* 1.0876*

(0.7007) (0.6276)

Precipitation: fall −0.1120 −0.1101

(0.0904) (0.0941)

Precipitation: winter 0.1963 0.1923

(0.1228) (0.1187)

Precipitation: spring −0.0229 −0.0244

(0.0497) (0.0519)

Solar radiation: fall 0.2058

(0.6043)

Solar radiation: winter −0.6528

(1.2442)

Solar radiation: spring 0.2658

(0.7284)

Constant 1.3067*** 12.3854** 12.7264*

(0.2030) (5.7127) (7.2344)

County fixed effect Yes Yes Yes

Year effect Yes Yes Yes

Number of observations 15,416 15,416 15,416

Note: Standard errors (in parentheses) are clustered at the county and province- by- year levels.

***p < 0.01; **p < 0.05; *p < 0.1.
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16 |   WANG et al.

are stable and statistically significant at the 5% level, validating the conjecture that harvest 
machinery reduces the downside risk of winter wheat yield caused by continuous precipitation. 
These results support the common notion that increasing the availability of harvest machin-
ery is essential to reduce crop yield losses associated with adverse weather conditions (Belton 
et al., 2021; Hignight & Watkins, 2007; Just & Pope, 1978). We also control for harvest machin-
ery use separately. The estimates reported in Table S3 of the Appendix confirm that harvest 
machinery does not affect yield skewness independently, implying that its main effect enters 
through the interaction with continuous precipitation.

We use the estimated coefficients in Column (3) of Table 3, which includes the complete 
controls in the model specification, to conduct a ballpark calculation of the benefits of using 
harvest machinery. Our findings indicate that an additional use of 1 kW/ha of harvest machin-
ery results in an approximate 0.3- unit increase in weather- related winter wheat yield skewness. 
Under the assumption of a constant conditional mean, E (y|x), this result implies that using an 
additional 1 kW/ha of harvest machinery would increase winter wheat yield by 669.4 kg/ha. 
Given that the wheat price in 2015 was about 1.7 CNY/kg, the benefit of reduced winter wheat 
yield losses from an additional 1 kW/ha of harvest machinery use would be about 1137.9 CNY/
ha.4 These benefits in terms of reduced winter wheat yield losses due to using harvest machin-
ery are in addition to the primary benefit of using harvest machinery, which, as extensively 
discussed in the literature (e.g. Paudel et al., 2019; Wang et al., 2016), lies in the reduction of 
labour costs.5

In addition to estimating the mitigation effect at the mean level, we explore the variations 
of the mitigation effect across different levels of harvest machinery usage across regions. In 
particular, we are interested in identifying a critical level of machinery usage during harvest, 
other things being equal, that fully offsets the downside risk of winter wheat yield caused by 
continuous precipitation. For illustration, we plot the marginal effect of the continuous pre-
cipitation on the winter wheat yield skewness under different levels of harvest machinery usage 
in Panel a of Figure 4. The result suggests that the marginal effect of continuous precipitation 
on the yield skewness is gradually enhanced (i.e. the downside risk is reduced) with the level 
of harvest machinery. Specifically, our calculation indicates that at 2.4 kW/ha, the beneficial 
impact of using machinery in the harvest is expected to offset fully the downside risk of winter 
wheat yield caused by continuous precipitation.

Comparing the historical and present levels of harvest machinery with the critical value 
would inform us about the potential of harvest machinery expansion in stabilising winter 
wheat output. The average level of harvest machinery input reached 2.2 kW/ha in 2015, close 
to the critical value of 2.4 kW/ha. Our estimation suggests that on average, the downside risk 
caused by continuous precipitation can be mitigated by mechanised harvest. Nonetheless, ex-
ploring the mitigation effect at the regional level is worthwhile. We plot the estimated regional 
mitigation effects in Panel b of Figure 4. These effects vary across regions. The harvest ma-
chinery has effectively offset the downside risk caused by continuous precipitation in Hebei, 

 4As discussed in Section 3.3, agricultural machinery usage peaked in 2015. Therefore, we used wheat price in 2015 to calculate the 
benefits of using harvest machinery. The wheat price in 2015 was obtained from the China Agricultural Product Cost and Revenue 
Compilation and is reported at 1998 prices.

 5We also compare the actual labour cost of increasing harvest machinery use with the counterfactual labour cost of using 
‘business- as- usual’ technology (i.e. keeping the amount of labour and machinery use constant in 2015 compared to 1998). The 
difference between actual and counterfactual labour costs can be attributed to the benefits of increased use of harvest machinery. 
The results show that a 1 kW/ha increase in harvest machinery use from 1998 to 2015 could reduce labour costs by 1129.1 CNY/ha, 
whereas machinery costs would only increase by 221.9 CNY/ha. By contrast, a 1 kW/ha increase in harvest machinery use in 2015 
would require an investment of about 61.6 CNY/ha. These figures strongly suggest that the benefits of labour savings more than 
offset the investment costs of harvest mechanisation. Data on machinery and labour costs are obtained from the China 
Agricultural Product Cost and Revenue Compilation, and data on the investment costs for harvest mechanisation are available 
from the China Agricultural Machinery Industry Yearbook. All costs are reported in 1998 prices.
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    | 17WEATHER- RELATED YIELD RISK AND MECHANISATION

Shanxi, Shandong and Anhui. At the same time, the remaining four provinces have yet to 
reach the critical level. In particular, our results suggest that Hubei and Shaanxi will benefit 
from more harvest machinery to reduce the downside risk of winter wheat yield caused by 
continuous precipitation.

To address the limitation of the skewness function in capturing the asymmetric effects of 
harvest machinery on winter wheat yield distributions, we further use the partial moment 
model proposed by Antle (2010) to investigate the relationship between harvest machinery and 
the negative skewness of winter wheat yield. The estimation results in Table S4 of the Appendix 
reveal that the interaction term coefficient is significant only for the negative partial moments. 
This finding confirms our previous results, suggesting that mechanised wheat harvest reduces 
the downside risk of winter wheat yield caused by continuous precipitation during the harvest 
season. Moreover, the quantile moment approach developed by Kim et al. (2014) can capture 
the downside risk. This method, however, entails the potentially subjective specification of 
proper quantile levels (Kulkarni & Rossi, 2023).

6.2.1 | Endogeneity

Although we utilise the fixed- effect model to assess the mitigation effect of harvest ma-
chinery on the downside risk of winter wheat yield, we may still have biased coefficient es-
timates due to potential endogeneity. First, a reverse causal relationship may exist between 
the downside risk of winter wheat yield and the use of harvest machinery. The use of harvest 
machinery is likely to be more prevalent in regions where continuous precipitation is fre-
quent during the winter wheat harvest season. Second, the use of harvest machinery may be 
subject to a self- selection, as the decision to use harvest machinery is not arbitrary. It may 
be influenced by various unobserved regional factors, such as land fragmentation and local 
labour markets, and the results may be biased without consideration of these factors. Third, 
omitted variables may render the estimated relationship between harvest machinery and 
winter wheat yield skewness unreliable. An example of omitted variables that are difficult 

F I G U R E  4  Mitigation effect of mechanised harvest. Solid symbols denote the statistically significant negative 
impact of continuous precipitation at the 10% level with a given level of harvest machinery usage, and hollow 
symbols represent quantities statistically insignificant at the 10% level. The black dashed line indicates a critical 
value of 2.4 kW/ha for harvest machinery usage that fully offsets the downside risk of winter wheat yield caused 
by continuous precipitation. The solid black line indicates that the average level, 2.2 kW/ha, of harvest machinery 
usage in China in 2015.
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18 |   WANG et al.

to measure is changes in crop management practices resulting from agricultural mechanisa-
tion, such as adjustments in planting density.

The instrumental variable approach is utilised to address the potential endogeneity issue 
discussed above (Acemoglu et al., 2001; Maggio et al., 2021). Specifically, we instrument the 
harvest machinery usage for each county with the average lagged harvest machinery usage 
in its neighbouring counties. It constitutes a suitable instrument variable because the harvest 
machinery usage of neighbouring counties is correlated due to the prevalent cross- regional 
machinery services and adjacent counties sharing similar agricultural policies, such as agri-
cultural machinery purchase subsidies, which are a major driver of harvest mechanisation. 
By contrast, the average lagged harvest machinery usage in neighbouring counties does not 
directly influence the county's current yield skewness. Column (1) in Table 4 reports the first 

TA B L E  4  Estimation results based on IV regression and additional climate experience controls.

Variables

Instrumental variable 
regression Climate experience

First stage Second stage 3 years 5 years

(1) (2) (3) (4) (5) (6)

Continuous 
precipitation

0.1588** −0.9957** −0.9404*** −0.9395*** −0.9587*** −0.9825***

(0.0731) (0.3865) (0.3199) (0.3199) (0.3214) (0.3270)

Continuous 
precipitation×
lagged average 
harvest 
machinery use 
in neighbouring 
counties

1.0174***

(0.0316)

Continuous 
precipitation×
harvest 
machinery

0.3010** 0.2948*** 0.2948*** 0.2984*** 0.3065***

(0.1403) (0.1090) (0.1106) (0.1094) (0.1115)

Moving average 
of continuous 
precipitation

−0.1487 −0.3968

(0.4315) (0.5951)

Moving standard 
deviation of 
continuous 
precipitation

−0.1597 −0.4928

(0.2643) (0.3209)

Constant 12.6000* 12.7172* 12.9959* 12.9352*

(7.2092) (7.1951) (7.1955) (7.1779)

Additional weather 
variables

Yes Yes Yes Yes Yes Yes

County fixed effect Yes Yes Yes Yes Yes Yes

Year effect Yes Yes Yes Yes Yes Yes

Number of 
observations

14,500 14,500 15,416 15,416 15,416 15,416

Note: The F- statistic for the first stage is 1034. The empirical analyses conducted in this paper are based on unbalanced panel data 
from the year 1998 to 2016, containing a total of 15,416 observations. The number of observations in columns (1)–(2) is reduced to 
14,500 because we instrument the harvest machinery usage for each county with the average of one- year lagged harvest machinery 
usage in its neighbouring counties. Additional weather variables include T

min
, T

max
, precipitation and solar radiation for fall, winter 

and spring. The standard errors (in parentheses) are clustered at the county and province- by- year levels.

***p < 0.01; **p < 0.05; *p < 0.1.
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    | 19WEATHER- RELATED YIELD RISK AND MECHANISATION

stage estimates: The F- statistic is 1034, much greater than the critical value of 10, indicating 
the strength of the instrumental variable. The coefficients for continuous precipitation and the 
interaction term in Column (2) in Table 4 remain statistically significant and quantitatively 
similar to their counterparts reported in Column (3) of Table 3, indicating that the findings 
reported in the previous section do not suffer from potential endogeneity.

6.2.2 | Past climate experience

Past climate experience of economic agents may alter their perspective about future climate 
and their likelihood to implement adaptation behaviour (Niles et al., 2015). Accordingly, an 
indicator of historical continuous precipitation during the winter wheat harvest season is in-
corporated into Equation  (7) to test the sensitivity of mitigation effect to past climate ex-
periences. Similar to Cui and Xie  (2021), this study uses the moving average of continuous 
precipitation or moving standard deviation of continuous precipitation from the previous 3 or 
5 years as proxy variables for past climate experience, respectively. We expect that farmers are 
more likely to undertake strategies to mitigate the downside risk of winter wheat yield if they 
have experienced more fluctuating weather. The estimation results of incorporating the past 
climate experience variables into Equation (7) are reported in Columns (3)–(6) of Table 4. All 
the moving average or moving standard deviation coefficients are not statistically significant, 
indicating that our results are insensitive to incorporating past climate experience.

6.2.3 | Alternative harvest season adjustments

Our sample period witnessed some changes in the conventional harvest schedule. To exam-
ine their potential influences, we perform a series of robustness tests on the adjustment of 
winter wheat harvest season, that is shortening the length of the harvest season while keep-
ing the plant and harvest dates fixed. Given that the harvest season can be shortened by 
4 days or more due to mechanised wheat harvest (Cao & Zhang, 2019; Gao & Song, 2014), 
we shorten the harvest season by 1–5 days in our examination. Table 5 reports the estima-
tion results of these various experiments. It shows that the estimated mitigation effects of 
mechanised harvest on winter wheat yield skewness are not affected by these adjustments 
of the harvest season.

6.2.4 | Alternative continuous precipitation measurement

To explore the sensitivity of our results with respect to the measurement of continuous precipi-
tation, we also experiment with two alternative indicators of continuous precipitation based 
on the adjustment of continuous precipitation duration during the harvest season. The first al-
ternative indicator is precipitation that lasts for 2 or more days (precipitation ≥ 0.1 mm in 24 h) 
with accumulated precipitation exceeding 40 mm in North China; or precipitation that lasts 
for 4 or more days (precipitation ≥ 0.1 mm in 24 h) with accumulated precipitation exceeding 
50 mm in South China. The second alternative indicator for continuous precipitation consid-
ers the precipitation duration lasting 4 or more days (precipitation ≥ 0.1 mm in 24 h) in North 
China, for 6 or more days (precipitation ≥ 0.1 mm in 24 h) in South China, whereas the accumu-
lated precipitation during the precipitation process is consistent with that of the first indicator. 
Columns (1)–(2) of Table S5 in the Appendix report the estimation results. The coefficients for 
the continuous precipitation and the interaction terms are quantitatively similar to our previ-
ous results and remain statistically significant.
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20 |   WANG et al.

6.2.5 | Placebo test

To confirm that our measurement of continuous precipitation during the harvest season is not 
some form of ad hoc indicator, we further use a placebo test to investigate the sensitivity of the 
results regarding the harvest season by considering alternative target periods. The placebo test 
determines whether the estimation results are driven by chance (Mohan, 2017). Specifically, 
it tests whether the impact of continuous precipitation on the winter wheat yield skewness re-
mains significant when another measurement period of continuous precipitation is randomly 
substituted in place of the actual winter wheat harvest season. In practice, we select an alterna-
tive 20- day period 2 weeks later than the end of the winter wheat harvest season to avoid the 
overlap with the actual harvest and then calculate the amount of continuous precipitation in 
this period. We expect the coefficients associated with this ‘irrelevant’ continuous precipita-
tion to be statistically insignificant, given that postharvest precipitation does not affect yield 
skewness. The results of the placebo test are shown in Column (1) of Table 6. As expected, the 
continuous precipitation after the harvest season and the interaction terms have no significant 
impact on winter wheat yield skewness.

6.2.6 | Spatial correlation

We further investigate the sensitivity of our results with respect to a more careful treatment of 
spatial dependence. The two- way clustering strategy in the baseline estimates allows spatial 
correlation across counties within a province–year combination. However, adjacent counties 
might have used similar production practices due to the large- scale cross- regional service of 
machinery. Accordingly, we used first-  and second- order spatial weighting matrices to capture 
the spatial correlation. The estimation results reported in Columns (2)–(3) of Table 6 indicate 
that the spatial autoregressive coefficients of the error term (�) in the spatial error model (SEM) 
and the dependent variable (�) in the spatial autoregression model (SAR) are statistically sig-
nificant at 1% levels. These tests imply a significant spatial correlation among the samples 

TA B L E  5  Mitigation effect under alternative harvest seasons.

Variables

Shorten the length of harvest season by

1 day 2 days 3 days 4 days 5 days

(1) (2) (3) (4) (5)

Continuous precipitation −0.8896*** −0.8435*** −0.9003*** −0.8374** −0.7709**

(0.1160) (0.2102) (0.2094) (0.2478) (0.2602)

Continuous precipitation×
harvest machinery

0.2625*** 0.1784*** 0.1917*** 0.1705** 0.1593*

(0.0249) (0.0480) (0.0503) (0.0674) (0.0706)

Constant 12.7791 12.7495 12.5055 12.3296 12.4173

(7.3197) (7.3841) (7.3301) (7.2009) (7.1964)

Additional weather variables Yes Yes Yes Yes Yes

County fixed effect Yes Yes Yes Yes Yes

Year effect Yes Yes Yes Yes Yes

Number of observations 15,416 15,416 15,416 15,416 15,416

Note: Additional weather variables include T
min

, T
max

, precipitation and solar radiation for fall, winter and spring. Standard errors 
(in parentheses) are clustered at the province level.

***p < 0.01; **p < 0.05; *p < 0.1.
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    | 21WEATHER- RELATED YIELD RISK AND MECHANISATION

despite � and � being insignificant in the specification of the second- order matrix in Columns 
(4)–(5) of Table 6. Across various specifications, the mitigation effect of harvest mechanisation 
on yield risk remains stable and statistically significant at the 1% level.

Nevertheless, excluding counties with missing values to construct a balanced panel dataset 
for the period of 1998–2016 and fulfil the prerequisites for the SEM and SAR model esti-
mation may result in the omission of specific information from the sample data. To address 
this concern, we further use an alternative approach for calculating the standard errors. This 
method, which hinges on correcting for spatial autocorrelation without diminishing the sam-
ple size, was proposed by Conley (1999) and applied using the procedure developed by Colella 
et al. (2019). The results presented in Column (6) of Table 6 show that the significance of the 

TA B L E  6  Estimation results based on placebo test and alternative estimation strategies.

Variables

Placebo test

Spatial correlation

First- order correlationa Second- order correlation
Conley 
correctionSEM SAR SEM SAR

(1) (2) (3) (4) (5) (6)

Continuous precipitation 
after harvest

−0.1273

(0.0939)

Continuous precipitation 
after harvest × harvest 
machinery

0.0721

(0.0458)

Continuous precipitation −0.6135*** −0.6028*** −0.6048*** −0.6052*** −0.9246***

(0.1674) (0.1658) (0.1656) (0.1659) (0.3451)

Continuous 
precipitation × harvest 
machinery

0.2064*** 0.2047*** 0.2071*** 0.2070*** 0.2907**

(0.0708) (0.0702) (0.0701) (0.0702) (0.1355)

λ 0.0437*** −0.0187

(0.0129) (0.0186)

ρ 0.0436*** −0.0169

(0.0129) (0.0185)

Constant 14.6136** −0.0000

(7.3822) (0.2402)

Additional weather 
variables

Yes Yes Yes Yes Yes Yes

County fixed effect Yes Yes Yes Yes Yes Yes

Year effect Yes Yes Yes Yes Yes Yes

Number of observations 15,416 14,497 14,497 14,497 14,497 15,416

Note: Additional weather variables include T
min

, T
max

, precipitation and solar radiation for fall, winter and spring. Standard errors 
(in parentheses) for column (1) are clustered at the county and province- by- year levels.***p < 0.01; **p < 0.05; *p < 0.1.
aThe spatial weighting matrices are defined as follows: in the first- order matrix, if counties g1 and g2 share a common boundary, 
then 

(
g1, g2

)
= 1, and 0 otherwise. In the second- order matrix, if county g1 is adjacent to county g2 and county g3 is adjacent to 

county g2, then 
(
g1, g2

)
=

(
g1, g3

)
=

(
g2, g3

)
= 1 and the rest elements are 0. In columns (2)–(5), SEM refers to the spatial error 

model, SAR refers to spatial autoregression model. � is the spatial autoregressive coefficient of the error term. � is the spatial 
autoregressive coefficient of the dependent variable. The number of observations in columns (2)–(5) is reduced to 14,497. This 
reduction results from the exclusion of counties with missing values in order to construct a balanced panel dataset and fulfil the 
prerequisites of the SEM and SAR model estimation. Standard errors for columns (2)–(5) are in parentheses. Conley spatial HAC 
standard errors in parentheses for column (6) using the 300 km cut- off point. Other cut- off choices, including 100, 200, 400 and 
500 km, produce similar results, which are not reported here but are available upon request.
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22 |   WANG et al.

estimated coefficients for continuous precipitation and the interaction terms is largely unaf-
fected by the chosen method of spatial correlation correction.

6.2.7 | Heterogeneity of the mitigation effect

The robustness checks reported above support the conjecture that mechanisation can reduce 
the downside risk of winter wheat yield caused by continuous precipitation during the harvest 
season. Given the vast heterogeneity across regions in China, we conduct further granular 
analysis, considering various topographic or socio- economic factors.

We first explore whether the mitigation effect of mechanised harvest on yield skewness 
varies across the spectrum of transportation infrastructure. Given that agricultural mech-
anisation development in China depends on machinery service across regions due to small 
farming scale, transportation infrastructure is critical to guarantee a timely machinery service 
by transporting harvest machinery (Zhou et al., 2020). Hence, the mitigation effect of mech-
anised harvest in a region with improved transportation infrastructure would be higher than 
those with an underdeveloped transportation network. We divided the sample according to 
their highway density, which was calculated as the ratio of highway length to its land areas, 
a proxy for the transportation infrastructure. The subsample estimation results are reported 
in Columns (1) and (2) of Table 7. The coefficient of continuous precipitation and the corre-
sponding interaction term exhibit the expected sign and are statistically significant for both 
groups. We further use Fisher's permutation test to infer the significance level of the difference 
between the two sets of estimated coefficients (Cleary, 1999; Lian et al., 2010). The p- value of 
0.050 for Fisher's permutation test suggests that the mitigation effects of harvest mechanisa-
tion in regions with improved transportation conditions are considerably higher than those 
with poorer transportation conditions.

We also compare the mitigation effects of harvest mechanisation on yield skewness in dif-
ferent topographic conditions, as in Qian et al. (2022). The sample was divided into two groups, 
plain and hill/mountain areas, according to the township classification of the China Statistical 
Yearbook. The estimation results of these two groups are reported in Columns (3) and (4) of 
Table 7, suggesting that the harvest machinery in plain areas is more likely to reduce the down-
side risk of winter wheat yield caused by continuous precipitation. By contrast, the mitigation 
effect in hilly and mountainous areas is barely significant, probably because the rugged terrain 
hinders the wide adoption of mechanisation.

The mitigation effect of harvest mechanisation in northern and southern China may differ 
because of the varying degrees of exposure to continuous precipitation. For example, contin-
uous precipitation stress considerably decreased from the south of the Qinling–Huaihe line 
to the north in a banded pattern (Li et al., 2018). Accordingly, we used the Qinling–Huaihe 
line, the geographical separator of northern and southern China, to divide our sample into 
two subsamples with different weather patterns. The results reported in Columns (5) and (6) 
of Table 7 indicate that the interaction terms remain positive and significant. The p- value of 
Fisher's permutation test of 0.492 suggests that the coefficients for the interaction term are not 
significantly different between the two areas.

7 |  CONCLUSIONS A N D POLICY IM PLICATIONS

Agricultural production risk caused by calamitous weather associated with climate change poses 
severe threats to global food supplies. Although recent studies have assessed the mitigation ef-
fects of microlevel farm management measures on agricultural production risk due to calami-
tous weather, the relationship between agricultural machinery and calamitous weather- induced 
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    | 23WEATHER- RELATED YIELD RISK AND MECHANISATION

downside risk of yield has yet to be carefully studied. This study constructs a county- level panel 
dataset of winter wheat production in China and estimates how continuous precipitation during 
the harvest season has affected the yield risk of winter wheat. Continuous precipitation dur-
ing the harvest season considerably increases the downside risk of winter wheat yield, threaten-
ing food security. Harvest mechanisation has mitigated the downside risk of winter wheat yield 
caused by continuous precipitation. The mitigation effect of harvest machinery is heterogeneous, 
depending on topographic conditions and the level of transportation infrastructure.

The benefits of harvest machinery in mitigating weather- related risk during the crop har-
vest season highlight the necessity of government policies to support the development of agri-
cultural mechanisation in developing countries. Policies that promote R&D and innovation in 
agricultural machinery technology to improve its applicability in hilly and mountainous areas 
would be particularly beneficial. Furthermore, investment in transportation infrastructure, 
such as rural roads, may help enhance the mitigation effect of harvest machinery in response 
to calamitous weather in vulnerable areas. Overall, our findings suggest that adopting modern 
agricultural production technologies may not only promote productivity but also mitigate the 
adverse impacts of calamitous weather. Investment decision that considers only the produc-
tivity enhancement but not the risk reduction in agricultural technology may undervalue the 
contribution of modern agricultural technologies.

Our study focusses on exploring the effectiveness of harvest mechanisation in reducing 
crop yield losses, whereas discussion about the full benefits and costs of investing in harvest 
mechanisation is outside the analysis framework because the model used in this study cannot 
quantify the additional socio- economic impacts of using harvest machinery, such as labour- 
saving benefits and the associated infrastructure development. Future research is warranted 
to analyse the benefits and costs of harvest mechanisation more accurately by integrating the 

TA B L E  7  Heterogeneous effects analysis.

Variables

Highway density Topographic conditions Geographical location

High Low Plain
Hill and 
mountain North South

(1) (2) (3) (4) (5) (6)

Continuous precipitation −1.1813*** −0.9462** −1.0239*** −0.6255* −0.6317** −0.9591***

(0.0952) (0.2087) (0.2655) (0.2653) (0.2330) (0.0469)

Continuous precipitation 
× harvest machinery

0.5291*** 0.2873*** 0.4353*** 0.2099 0.2419*** 0.2349*

(0.0632) (0.0132) (0.1012) (0.1276) (0.0537) (0.0955)

Constant 9.1563 17.6929 −9.4427* 20.6466 7.6594 14.0462

(7.8156) (9.8800) (4.7247) (17.6765) (8.3738) (12.3793)

Additional weather 
variables

Yes Yes Yes Yes Yes Yes

County fixed effect Yes Yes Yes Yes Yes Yes

Year effect Yes Yes Yes Yes Yes Yes

Number of observations 7922 7494 6806 5444 11,133 4283

Empirical p- valuesa 0.0500* 0.0900* 0.4920

aEmpirical p- values of the Fisher's permutation test are obtained by the bootstrap method with 1000 repetitions, which are 
estimated based on the null hypothesis that the coefficients of continuous precipitation × harvest machinery are equal for the 
two samples under consideration. The number of observations for the topographic conditions group is reduced to 12,250 because 
the classification in the China Statistical Yearbook (Township) does not include all counties in the sample. Additional weather 
variables include T

min
, T

max
, precipitation and solar radiation for fall, winter and spring. Standard errors (in parentheses) are 

clustered at the province level.

***p < 0.01; **p < 0.05; *p < 0.1.
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parameters we estimated with positive modelling approaches, such as CGE or IAMs, which 
can comprehensively capture the socio- economic feedback.
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