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We combine survey responses to subjective well-being (SWB) questions with air pollution data to recover Chi-
nese residents' valuation of air quality improvements. Motivated by theoretical models of ‘projection bias’ and
‘recency bias’, we posit that one's SWB (and valuation) is affected disproportionately bymore recent experiences
with air pollution, even though long-term air pollution is more detrimental to one's actual well-being. Towards
this end, we find that valuation for a unit improvement in PM2.5 is twice as large when air quality on the day of
survey is used as the explanatory variable compared to air quality averaged over a year. Our findings have far-
reaching research and policy implications as they call into question the appropriate temporal scale of air quality
conditions when conducting valuation studies or policy evaluations. Furthermore, our results imply that
policymakers could conceivably exploit this behavioral bias to introducemore stringent air quality management
policies when air quality is extremely poor.
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1. Introduction

Air pollution is fast becoming a major public health challenge espe-
cially across the developing world. It is estimated that in 2012, 3.2 mil-
lion or one in nine premature deaths in low- and middle-income
countries were attributable to outdoor air pollution (WHO, 2014).
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Unfortunately, this challenge is projected to intensify as policymakers
struggle to keep air quality from worsening (OECD, 2012). Nowhere is
the problem of air pollution most prominent in China where decades
of sterling economic growthwere accompanied by corresponding dete-
rioration in the environment (Z. Chen et al., 2013; Diao et al., 2009;
Ebenstein et al., 2015; Huang et al., 2012; Wu et al., 2017). The Chinese
government has been taking the fight to air pollution, but with varying
degrees of success as they seek to improve air qualitywithout sacrificing
economic growth (Xie et al., 2016; Q. Zhang et al., 2012). One of the key
ingredients that will aid policymakers in this battle of ‘trade-offs’ is the
accurate valuation for air quality improvements. Access to such valua-
tion will help decision-makers better weigh the benefits of reducing
air pollution against its costs. Perhaps recognizing the urgent need for
accurate valuation of air quality improvements, research on air quality
valuation in China has increased in recent years. These studies can be
generally categorized by the techniques inwhich valuationwas elicited:
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1 It should be noted that Ferreira et al. (2013) stopped after estimating an indirect utility
function and did not extend the analysis to value air quality.
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stated preference (Dong and Zeng, 2018; Du and Mendelsohn, 2011;
Hammitt and Zhou, 2006; Lin and Tan, 2017; Chuanwang Sun et al.,
2016a; Chuanwang Sun et al., 2016b; Tan and Zhao, 2014; Tang and
Zhang, 2016; G. Wang et al., 2016; H. Wang and Mullahy, 2006; K.
Wang et al., 2015; X. Wang et al., 2006; Y. Wang and Zhang, 2009;
Wei and Wu, 2017; Yu and Abler, 2010); property hedonic (D. Chen
and Chen, 2017; Zheng et al., 2014; Zheng and Kahn, 2008; Zheng
et al., 2010); averting expenditures (Barwick et al., 2017; Ito and
Zhang, 2016; J. Zhang and Mu, 2017); happiness (Liu et al., 2018; X.
Zhang et al., 2017); and migration (S. Chen et al., 2017; Freeman et al.,
2017).

This study departs from the usual valuation techniques and instead
uses subjective well-being or self-reported happiness to value air qual-
ity improvements. In conducting this study, we expand upon earlier
works in twoways. First, air pollution, while undesirable, is often corre-
lated with desirable attributes such as economic opportunities. This is
especially true in developing countries where access to jobs are highly
valued (Tan-Soo, 2017). Hence, valuation for clean air would be biased
downwards if this confounding relationship is not controlled for. To-
wards this end, we use a wind-based instrumental variable to verify
the direction of the confounding relationship and recover causal inter-
pretation of willingness-to-pay for clean air. Second, this is one of the
first studies to investigate empirically if valuation of air quality improve-
ment is susceptible to projection or recency biases. From a welfare
standpoint, it is obvious that one is better off with year-round improve-
ment in air quality rather than just a month or a day of improvements.
However, evidence from behavioral economics and psychology provide
fodder to believe that one could possibly place a higher value for the
shorter improvement than the longer-term improvement.

Using a household-level representative sample from China, we first
find that the relationship between one's self-reported happiness and
air quality is indeed confounded. We deploy an instrumental variable
strategy by using upwind transmission of pollution to break this con-
founding relationship and derive unbiased valuation for clean air. Sec-
ond, we unearth a previously undiscovered relationship between
valuation and temporal scale of air pollution. Specifically, we find that
the valuation for air quality improvements systematically decreases as
wemove from daily measures of air quality to annual averaged air qual-
ity. This is to say that individuals' valuation for air quality is most
strongly influenced by their most recent experiences with air pollution.
This finding provides new directions for future work in air quality valu-
ation and insights in air quality management policies.

1.1. Literature review

The logic behind using happiness or well-being data to value air
quality improvements is hinged on the assumption that subjective
well-being or self-reported happiness is correlated with one's ‘utility’
or welfare. If we accept this assumption, then we could conceivably es-
timate an indirect utility function to recovermarginal utilities or prefer-
ence parameters. This technique contains elements of both revealed and
stated preference methods. First, the stated preference portion is
reflected by respondents' self-reporting of their happiness or well-
being level. Second, the revealed preference portion is inferred by the
researcher as we obtain air quality measures based on the respondents'
residential locations. There is increasing popularity in using subjective
well-being to value air quality because self-rated happiness questions
are included in most social surveys and air quality information are rela-
tively easier to obtain than before. This method also confers empirical
advantage as the recoveredmarginal willingness-to-pay is a more com-
prehensive valuation for air quality improvements rather than a lower-
bound estimate as seen in many revealed preference studies (Barwick
et al., 2017; Ito and Zhang, 2016). In one of the earliest applications of
subjective well-being data to air quality valuation, Welsch (2002)
used a country-level survey and found that respondents frommore pol-
luted countries reported lower levels of happiness. The global average
marginal willingness to pay (MWTP)was computed to be US$70 per ki-
loton of nitrogen dioxide. With the same approach, Welsch (2006)
again used a country-level dataset to estimate valuation. The dataset
in his second iteration included repeated observations for each country
and thus he was able to control for time and spatially invariant factors.
Many latter studies, such as Luechinger (2009) and Ferreira et al.
(2013), used individual-level panel datasets.1 As such, they could intro-
duce individual fixed-effects to control for respondent-level heteroge-
neity. Luechinger (2009) further addressed the endogeneity of air
pollution by using pollution fromupwind locations as instrumental var-
iable. He found that theMWTP for air quality in Germany is higher after
instrumenting, suggestingpositive confounding factor (e.g. positive cor-
relation between air pollution and economic opportunities) between air
pollution and happiness. Lastly, Levinson (2012) and X. Zhang et al.
(2017) applied this method to individual cross-sectional data from the
United States and China respectively. However, a key difference be-
tween these two studies and the others is that they used air quality on
the day of the survey as opposed to an annual average used in other
studies.

2. Theoretical model and empirical strategy

This paper is, to the best of our knowledge, one of the first studies to
examine if air quality valuation is subjected to projection or recency
biases. There are at least two reasons why we believe such a relationship
exists. First, frommicroeconomics theory, the behavioral anomaly of ‘pro-
jection bias’ is formalized in an individual decision-making model
(Loewenstein et al., 2003). This gist of ‘projection bias’ is that individuals
project current conditions to their future selves. The canonical example to
demonstrate projection bias is excessive grocery purchases on an empty
stomach. Similarly, it is also possible that one might ‘over’ purchase air
purifiers (or any other protective equipment) or in other words, have ex-
ceedingly high valuation for clean air during periods of bad air quality due
to projection bias. Such tendencies have been observed with respect to
over-purchase of winter clothing during periods of frigid conditions
(Conlin et al., 2007). Recent studies by J. Zhang and Mu (2017) and
Cong Sun et al. (2017) provided some evidence to support this hypothesis
with respect to air pollution as they found that e-commerce sales of face-
masks and air purifiers in China increased bymultiple folds during days of
severe air pollution. Second, the behavioral economics and psychology lit-
erature suggest the existence of ‘recency bias’, i.e. one's overall experience
is much more affected by recent events. For example, Garbinsky et al.
(2014) found that end moments of a culinary experience are more influ-
ential than the beginning moments in affecting experimental subjects'
memory of the entire experience. Similarly, Redelmeier and Kahneman
(1996) found that even though all patients incurred similar amount of
pain in a colonoscopy examination, those who experienced less pain at
the end of the procedure had a more favorable view of the entire exami-
nation compared to patients who experienced more pain at the end. In
the case of air pollution, this could mean that a respondent reports
lower level of happiness if the interview happens to be conducted on a
day when air pollution is particularly high.

2.1. Theoretical model

We use a standard microeconomic model to demonstrate how air
quality of different time-windows may affect a utility maximizing indi-
vidual's valuations of air quality improvements. Adapting from Champ
et al. (2003), we assume that an individual's utility is given by:

U ¼ U X; L; Sð Þ ð1Þ

S ¼ S α; Zð Þ ð2Þ



2 Note that ∂V
.

∂α
is negative as increased air pollution decreases utility.
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where X is consumption of a unitaire good, L is leisure time, and S is time
spent sick. Furthermore, we assume in Eq. (2) that sickness is a function
of air pollution, α and other exogenous factors Z, such as age and health
endowment. Next, without loss of generality, we suppress mitigating
and averting behaviors and write the budget constraint as:

I þw � T−L−Sð Þ ¼ X þM Sð Þ ð3Þ

where I is the non-labor income,w is the wage rate, T is total time avail-
able, L is leisure time, andM(S) is medical expenses. The left-hand-side
in Eq. (3) refers to the individual's total earning, which consists of non-
labor income and labor income. The right-hand-side refers to the indi-
vidual's expenditure, which consists of the unitaire good and medical
expenses.

We can substitute Eq. (2) into Eqs. (1) and (3) and solve for the util-
ity maximization problem. In turn, we obtain the optimal amount of X⁎
and L⁎ in terms of I, w, and α.

The indirect utility can thus be written as:

V ¼ V I;w;M Sð Þð Þ ð4Þ

The marginal willingness-to-pay (MWTP) for clean air is thus the
marginal rate of substitution between the marginal utility of α to the
marginal utility of I:

MWTP ¼ −
∂V
.

∂M

� �
∂M

.
∂S

� �
∂S
.

∂α

� �
∂V
.

∂I

ð5Þ

∂V
.

∂M
is the marginal disutility of medical expenses, and assumed to be

negative. ∂S
.

∂α
is themarginal effect of air pollution on sickness and as-

sumed to be positive. ∂M
.

∂S
is themarginal effect of sickness onmedical

expenses and assumed to positive. Lastly, ∂V
.

∂I
is themarginal utility of

income, and assumed to be positive.
In this simple and conventional setup, air pollution affects one's utility

orwell-being only through the health channel, denoted by S in themodel.
First, we consider the case without projection or recency biases. Sup-

pose there are twomeasures of air pollution α1 and α2 at different time-
windows, say α1 is measured at a shorter time scale compared to α2. In
this regard, one could conceivably argue that MWTP∣α1

≤ MWTP∣α2
as

long-term air pollution has greater adverse impacts on health compared

to short-term air pollution, i.e. ∂S
.

∂α1

≤∂S
.

∂α2

. There are several pieces of

evidence to support this argument. First, Hoek et al. (2013) summarized
results from various epidemiological studies on the health effects of air
pollution and found that the relative risk of cardiovascular mortality
per 10 μg/m3 of annual PM2.5 is at around 1.11 for long-term exposure
(defined as annual or longer). On the other hand, Shah et al. (2015),
also in a review paper, found that the relative risk of mortality for
short-term exposure (defined as up to weekly-average) is at around
1.012 per 10 μg/m3 of short-term exposure to PM2.5. Second, the idea
that air quality of longer time-window is of greater concern is also
reflected in the World Health Organization's air pollutant standards
where the standard for daily PM2.5 is at 25 μg/m3 while the yearly stan-
dard is markedly more stringent at 10 μg/m3.

Second, we now consider a case where projection or recency bias is
allowed to affect air quality valuation. To do so, we modify Eq. (1) to
allow air pollution to directly cause disutility or unhappiness to the in-
dividual through recency or projection bias:

U ¼ U X; L; S;αð Þ ð1′Þ

Eq. (1′) is different from Eq. (1) by virtue of air pollution α, entering
directly into the individual's utility function. While earlier models only
assess disutility of air pollution through the health channel (i.e. through
the S channel in ourmodel), it is conceivable that air pollutionmay also
confer disutility directly through hedonic experiences to exposed indi-
viduals. There are two explanations for this. First, earlier experiments
showed that on top of their intrinsic effects, recent or latest experiences
register more deeply in the respondents' mind – a phenomenon known
as recency bias.While this phenomenon had been demonstrated in pain
and culinary experiences, this is the first study to test if individuals re-
spond similarly to air quality (Garbinsky et al., 2014; Redelmeier and
Kahneman, 1996). Second, it is also possible that individuals attribute
additional disutility to current air pollution due to projection bias.
Loewenstein et al. (2003)made the case that individuals are susceptible
to projection bias where they extrapolate current conditions onto their
future selves.

Following Eq. (1′), we can rewrite Eqs. (4) and (5) as:

V ¼ V I;w;M Sð Þ;αð Þ ð4′Þ

MWTP ¼ −
∂V
.

∂M

� �
∂M

.
∂S

� �
∂S
.

∂α

� �
þ ∂V

.
∂α

∂V
.

∂I

ð5′Þ

The main difference between Eqs. (5′) and (5) is that, other than the
health channel, valuation for air quality improvement is now also directly

affected through the recency and projection biases channels, ∂V
.

∂α
. In

contrast to the earlier case, we hypothesize that the direct marginal dis-

utility of air pollution ∂V
.

∂α
is larger in magnitude as air quality is evalu-

ated at a shorter timeframe. That is, ∂V
.

∂α1

≤∂V
.

∂α2

if α1 is air quality

measured at a shorter time scale andα2 is air qualitymeasured at a longer
time scale.2 Consequently, in comparison to the case without projection
or recency biases, this means thatMWTP∣α1

≥MWTP∣α2
if:

−

∂V
.

∂M

� �
∂M

.
∂S

� �
∂S
.

∂α1

� �
þ ∂V

.
∂α1

∂V
.

∂I

N−

∂V
.

∂M

� �
∂M

.
∂S

� �
∂S
.

∂α2

� �
þ ∂V

.
∂α2

∂V
.

∂I

ð6Þ

After rearranging, Eq. (6) becomes:

−
∂V
.

∂M

� �
∂M

.
∂S

� �
∂V
.

∂I

∂S
.

∂α2

−∂S
.

∂α1

� �
b

1
∂V
.

∂I

∂V
.

∂α2

−∂V
.

∂α1

� �
ð6′Þ

First, the terms on each side of the Eq. (6′) represent the change in
marginal utility as we shift from long-term exposure to short-term ex-
posure. Specifically, the L.H.S. expression shows the increase inmarginal
utility through health channels from long-term to short-term exposure.
Similarly, the R.H.S. expression shows the decrease in marginal utility
through increased projection and recency biases from long-term to
short-term exposure. Hence, MWTP∣α1

≥ MWTP∣α2
if the projection and

recency biases overwhelm effects from the health channels.

2.2. Empirical model

Using the theoretical model we developed and empirical strategies
from earlier happiness-based valuation studies (e.g. Levinson, 2012;
Luechinger, 2009),we estimate a reduced-form indirect utility function:

Yirt ¼ α0 þ α1Pollr;t−lag þ α2 ln incomeið Þ þWr;t−lagξþ ZiΩþ λt

þ σ r þ εirt ð7Þ
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Wind Direction
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City-r

City-r´1 City-r´4
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Fig. 1. Illustration of upwind instrumental variable strategy Notes: This figure illustrates
examples of the regional transmission of air pollution from the upwind City-r′1 and
City-r′2 to City-r. The black dash lines connecting City-r′ and City-r represent the
eventual transmission directions by wind Cosine decomposition.
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MWTP ¼ −
dY
.

dPoll
dY
.

dincome

¼ −
α1

α2
income ð8Þ

In Eq. (7), we regress self-reported well-being (used as a proxy for
indirect utility) reported by respondent i, from county r, at time-of-
interview t on a vector of weather characteristicsW, and socioeconomic
characteristics, Z. Time (specifically, month-by-week3) fixed effects, λ
and county fixed effects, σ are included to control for any time- and
county-invariant factors. The weather characteristics controls are in-
cluded up to second-order polynomials and consist of temperature, pre-
cipitation, duration of sun, and wind speed. The socioeconomic
characteristics controls are age and its squared counterpart, sex, resi-
dence type and size, marital status, ethnic group, and family size.

The main explanatory variables are income and air quality. The
coefficient on incomeα2, can be interpreted as themarginal utility of in-
come. Similarly, the coefficient on air quality, α1, can be interpreted as
the marginal utility of air quality. α1 and α2 can thus be used to derive
the average marginal rate of substitution between income and air qual-
ity, or also known as the marginal willingness-to-pay (Eq. 8).

Lastly, we test the hypothesis discussed in the theoreticalmodel sec-
tion by experimenting with different lags of air quality (denoted by the
t-lag subscript). The variable lag ranges from no lags (i.e. air quality on
the day of the interview) to one-week lag, two-week lag, three-week
lag, one-month lag, two-month lag, six-month lag, and one-year lag.

2.3. Instrumental variable strategy

Air quality is likely to be endogenous given that places with more
economic growth also tend to be more polluted (e.g. Chay and
Greenstone, 2005; Tan-Soo, 2017). Hence, it is likely that a more pol-
luted place may also be deemed as more ‘attractive’ because of its eco-
nomic opportunities. If undealt with, the coefficient for air pollution
would show up empirically with an upward-biased estimate. A wide
range of empirical strategies have been developed to deal with the
endogeneity issue in air quality. Chay and Greenstone (2005) in their
application to the United States housing market used county's non-
attainment status as an exogenous variation of air quality. In an applica-
tion to Indonesia, Tan-Soo (2017) used number of fire hotspots in up-
wind directions as instruments for air quality. Luechinger (2009) used
a combination of individual fixed-effects and whether German power
stations in upwind counties had installed scrubbers as instruments.
Lastly, S. Chen et al. (2017) used high-altitude temperature gradient
as an instrumental variable for air quality in China. Towards this end,
our instrumental variable strategy is similar to studies that used upwind
air pollution to instrument for downwind county air quality (e.g. Bayer
et al. (2009); Tan-Soo (2017)). The rationale behind this instrument is
that while upwind air pollution has a strong relationshipwith its down-
wind location's air quality, it would not affect the ‘attractiveness’ of the
downwind location through other channels.

The equations for constructing upwind pollution can be written as

UpwindPollrt ¼
X
r0≠r

Pollr0t � Vr0t

D2
r0 ;r

� cosθr0 ;r;t ð9Þ

where

cosθr0 ;r;t ¼ max cos γr0 ;t−βr0t

� �
;0

n o
ð10Þ

The instrumental variable is constructed in the following manner.
First, using a climatic dataset, we know the dominant upwind direction
3 Month-by-week fixed effects means that all interviews conducted on say, the first
week of July are assigned the value of one in a binary variable, and so on. Inclusion of this
fixed effects control for any general factors occurring during that particular time-span.
for county r at time t (or any of its lags). Second, we can then pick out
the counties in the upwind direction of county r. However, the amount
of pollution that each upwind county (denoted as r′) contribute to
county r is dependent on its location with respect to the wind direction
and distance. In the third step (refer to Fig. 1), we draw a straight-line
from the centroid of upwind county r′1 to downwind county r and use
cosine decomposition to calculate the proportion of pollution that will
be carried over. For example, in Fig. 1, r′1 and r′2 are both upwind
counties to county r. However, because of their location, compared to
county r′2, county r′1 will obviously contribute a larger proportion of
its pollution to r. The amount of contribution from each upwind county
is thus apportioned by taking the cosine of the difference between the
angle of the north direction of upwind county and straight-line to
downwind county (γr′, t) and the angle of the north direction of upwind
county andwind direction (βr′t). As depicted in Fig. 1, the angular differ-
ences are θr′1, r, t and θr′2, r, t respectively for counties r′1 and r′2. It is pos-
sible for the angular difference to be less than zero, e.g., county r′4 in
Fig. 1which lies to the east of county r. As such, we bound the cosine de-
composition in Eq. (9) to be non-negative since downwind countieswill
not contribute upwind county air pollution. Third and finally, we also
weigh the amount of contributed pollution by wind speed, Vr′t and the
squared-distance between each pair of city, D2

r0 ;r .
A central decision in constructing this instrument is the appropriate

radius for selecting upwind counties. If the radius is too small, the exclu-
sion restriction criteria may not be fulfilled, e.g. upwind county r′1 will
affect downwind county r's attractiveness if both counties are very
near to each other. On the other hand, the predictive power of this in-
strument will be diminished if the distance is too big. As such, we set
a radius band of between 100 km to 300 km for upwind counties to
be selected. This chosen radius band is roughly in-line with those used
in other studies. For example, Bayer et al. (2009) used a distance of at
least 80 km when instrumenting for air pollution in the United States.
Similarly, Barwick et al. (2017) used a distance of at least 150 km for
China.4
3. Data

The dataset for this study is assembled from three sources.
First, household- and individual-level data are from a sub-sample of

the Chinese General Social Survey (CGSS) which was conducted from
4 To further assess the suitability of this radius band, we implement robustness checks
in Table 5 where we used larger and smaller radii.



Fig. 2. Respondents' interviews distributed by month.
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July to October in 2015 (Fig. 2). The 2015 CGSS survey used a three-stage
cluster strategy to select households that are collectively representative
of the Chinese population. The first stage of the sampling process is at
city or county level, followed by the neighborhood committee (or village
committee in rural area) level, and finally, households are randomly se-
lected to participate in the survey. Out of the full CGSS sample (which
consists of 11,559 households from 478 neighborhood committees (or
village committees in rural areas) across 28 provinces), 3640 households
were randomly selected to receive additional survey modules with sub-
jective well-being questions. Fig. 3 shows the distribution of this sample
across 129 counties. As expected,most of the respondentswere from the
more populous Eastern provinces and cities. The CGSS survey contained
information on households' socioeconomic status, educational level, and
responses to self-reported well-being. More specifically, we use re-
sponses to two such questions to form our dependent variables. The
first question is: “How do you feel about your current health conditions?”.
Respondents answer this question on a 5-point Likert scale ranging
from very unhealthy to very healthy. The second question is: “In general,
do you feel happy with your life?”. Similarly, respondents answer on a
5-point Likert scale ranging from very unhappy to very happy. In this re-
gard, we expect to observe similar patterns for both dependent variables
as they are relatedmeasurements of subjective happiness, and especially
since one's health condition is also a part of his/her well-being.

The second data source is from the China National Environmental
Monitoring Centre (CNEMC) where we obtain hourly air quality infor-
mation. Since 2013, the Chinese government has made air quality data
publicly available, including air quality index (AQI) and six specific at-
mospheric pollutants: ground-level ozone (O3), particle pollutants
PM2.5 and PM10, carbon dioxide (CO), sulfur dioxide (SO2), and nitrogen
dioxide (NO2).5 Our air quality measurements cover 1498 monitoring
stations including geographical coordinates and altitude information
for each station. Air pollution data is matched to the CGSS data using
the following methods. First, we use the inverse-distance weighting
(IDW) method to convert pollution data from station to county. The
IDW method is widely used in the literature to impute either pollution
or weather data (Currie and Neidell, 2005; Deschenes and Greenstone,
2007; Schlenker and Walker, 2015). The basic algorithm is to take the
weighted average of all monitoring stations within the circle with cer-
tain radius for the centroid of each county.We choose 100 km as our ra-
dius (and our results are robust to different radius lengths). Second, we
match pollution data to each respondent by their county code and aver-
aged all pollution data and weather data to the week/month/year prior
to the date of the interview, depending on the research design.

Lastly, meteorological data were obtained from the China Meteoro-
logical Data Service Center (CMDC), which is affiliated to the National
Meteorological Information Center of China.6 The CMDC records daily
maximum, minimum, and average temperatures, precipitation, relative
humidity, wind speed, and duration of sunshine for 820weather stations
in China.We convertweather data from station to county again using the
IDWmethod. Similarly, we then assign weather data at various time fre-
quencies to each respondent according to their county of residence.
3.1. Descriptive statistics

The descriptive statistics from the assembled dataset are collated in
Table 1. On average, respondents mostly reported being healthy and
happy as they registered 3.6 and 3.9 respectively on the Likert-scale
(with 5 beingmost positive outcomes).We additionally defined two bi-
nary variables to reflect high levels of unhappiness or unhealthiness.
5 Ghanem and Zhang (2014) showed that Chinese cities may manipulate air quality
data around the cutoff point of 100 (AQI of less 100 is defined as ‘blue skies’ day in Chinese
policies). We assess the veracity of our dataset by investigating for any anomalies corre-
sponding to this cutoff point using probability density graphs (Fig. S1). We find no evi-
dence of data manipulation in our dataset.

6 The data can be obtained from http://data.cma.cn/.

7 The remaining descriptive statistics for other household and individual characteris
are collected in Table A1.

8 The surveyweights are based on the number of respondents froma county in the s
ple vs. the population of the county.
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“very unhealthy” is assigned a value of one if the respondent reported
being very unhealthy or unhealthy in their self-rated health assessment.
The variable “very unhappy” is constructed similarly. These two binary
variables are used in the regression analyses in the same manner as
the two other dependent variables. Similar to the Likert-scale response,
only about 18% and 7% of respondents reported having high levels of un-
healthiness and unhappiness respectively. The average respondent is
around 50 years of age, has educational level of 4.97 – which corre-
sponds to high school education, and makes around 36,000 CNY per
year (equivalent to around US$5500).7

Next, we report average daily air quality indicators. AQI is a unitless
composite air quality indicator that takes into account all major air pol-
lutants. On average, the hourly AQI and PM2.5 read at around 88 and 60
μg/m3 respectively. In comparison, the hourly AQI and PM2.5 for Beijing
in 2016 are at around 102 and 73 μg/m3 respectively. Reflecting China's
wide geographical span and heterogenous conditions, there is wide var-
iation for all air quality indicators. For example, while the lowest daily
average PM2.5 is around 25.8 μg/m3 (which is near to the WHO recom-
mended daily standard of 25 μg/m3), the highest recorded PM2.5 is at
121.4 μg/m3.

4. Results

Results from estimation of Eq. (6) are collected in Table 2 where
panel A contains results for self-rated health status and panel B contains
results for subjective well-being. Column 1 shows the results from a
fixed effects ordinary least squares model without instrumenting for
air quality. The coefficients for daily PM2.5 aremostly positive and statis-
tically insignificant for the four dependent variables, suggesting that air
pollution does not affect one's health status or well-being. This counter-
intuitive result is most likely due to the confounding relationship be-
tween air pollution and economic opportunities. Next, using a two
stage least squares linearmodel, we instrument for air quality using up-
wind pollution. The coefficients are now negative and statistically sig-
nificant (Table 2, Column 2). The first stage Kleibergen-Paap Wald F-
statistics is high at N20, indicating strong predictive power of upwind
pollution on downwind air quality. For the next three models (Table 2,
Columns 3–5), we incrementally add weather controls, socioeconomic
characteristics controls, and surveyweights to examine if the coefficient
for air pollution is stable.8 In the full specification in Column 5 (our pre-
ferred model), the marginal impact of PM2.5 on self-rated health is
tics

am-

http://data.cma.cn/


Fig. 3. Distribution of respondents from the CGSS survey (N = 3863 in 129 counties).
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around −0.02 (self-rated health is reported on a Likert scale of one to
five). Similarly, the marginal impact on subjective happiness is also at
around−0.02. To allow for easier interpretation,we also estimate linear
probability models by re-defining the dependent variables as binary
outcomes where values of one and two in the self-reported happiness/
health Likert scale are defined as very unhappy/unhealthy (takes the
value of one now), and zero otherwise. Results from these linear proba-
bility models are collected in Columns 6 to 10 and they follow the same
trend as their Likert-scale counterparts. Results from Column 10 can
thus be interpreted as one additional unit of daily PM2.5 would increase
the probability of the average respondent reporting high level of unhap-
piness by 0.2% and poor health status by 1%. In this first round of analy-
sis, we demonstrate that the relationship between air quality and well-
being is confounded and instrumental variable strategy is needed to
Table 1
Descriptive statistics.

Variable Definition (Unit) Mean Std. Min Max

Self-reported
Self-rated health 1-Unhealthy, 5-healthy 3.60 1.07 1.00 5.00
Very unhealthy 0-No, 1-yes 0.18 0.38 0.00 1.00
Subjective
well-being

1-Unhappy, 5-happy 3.87 0.82 1.00 5.00

Very unhappy 0-No, 1-yes 0.07 0.26 0.00 1.00

Air pollutants
AQI Index (0–500) 87.95 21.58 44.75 158.43
PM2.5 μg/m3 59.60 17.46 25.82 121.37
PM10 μg/m3 54.80 12.11 27.73 89.68
O3 μg/m3 97.28 29.12 47.94 193.96
SO2 μg/m3 29.17 20.27 6.96 147.56
NO2 μg/m3 35.97 13.46 11.54 64.07
CO mg/m3 1.15 0.40 0.50 2.21

Weather controls
Temperature 0.1 °C (daily average) 146.56 49.08 19.00 248.26
Precipitation 0.1 mm (8–20 h accumu.) 28.68 16.18 6.85 82.70
Sunshine duration 0.1 h (daily total) 52.55 13.89 23.33 80.73
Relative humidity % (daily average) 68.96 9.54 43.31 86.71
Wind-speed 0.1 m/s (hourly record) 21.69 8.15 8.20 64.68
Wind-direction 0–16 (daily average) 8.05 1.61 1.00 16.00

Notes: N = 3640. Research sample is 1/5 random subsample of CGSS. Survey period of
CGSS 2015 lasts from Jul-2015 to Nov-2015. Please see Appendix A for personal character-
istics and family information.
derive a causal relationship. As with earlier works in this literature, we
have shown that air pollution negatively affects one's self-rated well-
being.

To calculate the MWTP for air quality improvement, log of income is
added to themodel (Table 3). Panel A shows the full specificationmodel
with income added. A quick comparison with the results in Table 2
shows that air quality coefficients are stable even after income is
added. This suggests sufficient variation between income and air pollu-
tion exposure in the dataset. These results can thus be applied onto
Eq. (7) to compute the marginal willingness-to-pay for air quality im-
provements (MWTP). Using subjective well-being as the dependent
variable, the average MWTP for a 1 μg/m3 improvement in daily level
PM2.5 is derived at around 6.2% of annual household income or around
4410 CNY. Similarly, the MWTP computed using self-rated health is at
around 5.4% of annual household income. When considered either in
terms of proportion or absolute amount, the MWTP computed in our
study is larger than those recovered from other studies (e.g. Freeman
et al., 2017; X. Zhang et al., 2017).9
4.1. Air pollution of varying temporal lengths

The air quality variable used in previous analyses was from the day
at which the interview was conducted. A central investigation of this
study is to examine how air quality valuation changes with air pollution
of different temporal lengths. Table 4 contains the estimation results of
using air quality averaged over different time lengths. First, we can see
that the results exhibit projection or recency biases as the coefficient
for air pollution steadily decreases in magnitude as the temporal length
increases. In other words, a unit of PM2.5 improvement on the day of the
interview has a larger marginal impact on the respondent's subjective
well-being compared to a unit of PM2.5 improvement over the entire
year. This monotonic relationship between time length of air pollution
and coefficient of air pollution is observed for both self-rated health
and subjective well-being.10 However, these results will not be
9 We have also conducted heterogeneity analysis by splitting the sample along the lines
of sex of respondent, age group, educational level, and income level (see Tables A2 and A3
for results).
10 Similar results are observed when the binary variables for self-rated health and sub-
jective well-being are used as dependent variable.



Table 2
Regression results of air quality on subjective well-being.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

OLS 2SLS-1 2SLS-2 2SLS-3 2SLS-4 OLS 2SLS-1 2SLS-2 2SLS-3 2SLS-4

Panel A. Self-rated health Self-rated health (1-unhealthy, 5-healthy) Very unhealthy (1-unhealthy, 0-otherwise)
PM2.5 0.0001 −0.0121⁎ −0.0217⁎⁎ −0.0171⁎⁎ −0.0192⁎⁎ 0.0004 0.0055⁎⁎ 0.0091⁎⁎⁎ 0.0082⁎⁎⁎ 0.0098⁎⁎⁎

(0.0016) (0.0065) (0.0089) (0.0081) (0.0091) (0.0006) (0.0022) (0.0031) (0.0030) (0.0034)

Panel B. Subjective well-being Subjective well-being (1-unhappy, 5-happy) Very unhappy (1-unhappy, 0-otherwise)
PM2.5 −0.0041⁎⁎ −0.0102⁎ −0.0158⁎⁎ −0.0168⁎⁎ −0.0200⁎⁎ 0.0003 0.0012⁎⁎ 0.0015⁎ 0.0016⁎⁎ 0.0020⁎⁎

(0.0020) (0.0056) (0.0078) (0.0079) (0.0087) (0.0002) (0.0006) (0.0008) (0.0008) (0.0009)

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month-by-week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Weather controls Yes No Yes Yes Yes Yes No Yes Yes Yes
Covariates Yes No No Yes Yes Yes No No Yes Yes
Survey weights Yes No No No Yes Yes No No No Yes
KP F-statistics NA 21.99 18.18 18.05 20.68 NA 21.99 18.18 18.05 20.68

Notes: N = 3640. Weather controls include the second order polynomial of temperature, precipitation, sunshine hours and wind force. We control the individual characters age, age
squared, and gender, as well as the household characters residence, marriage status, ethnic group, family size and living space. The survey weights are based on the representativeness
of the respondents in a county. Standard errors are clustered by date and listed in parentheses.
⁎⁎⁎ p b 0.01.
⁎⁎ p b 0.05.
⁎ p b 0.1.
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meaningful if there is a corresponding change in marginal utility of in-
come such that valuation for air quality improvement remains the
same. It is clear from Table 4 that coefficient for income remains largely
consistent across the different models for each dependent variable.
Hence, we can compute the MWTP using these results. For subjective
well-being, MWTP decreases from around 6.2% of household income
when current day air pollution is used to around 3.1% when annual-
averaged air pollution is used – a one-fold increase. Similarly, the
MWTP, when computed using self-rated health, decreases from 5.4%
of household income to 1.9% when the air quality metric changes from
daily to annual.11,12
4.2. Robustness checks

We conduct a series of robustness checks to ensure our results are
stable under different empirical assumptions (Table 5). First, we cluster
the standard errors by usingdifferent group definitions andfind that the
statistical significance level for PM2.5 coefficients is unchanged across
the four dependent variables (Table 5, Scenarios 1 and 2). Second, we
shorten the IV boundary range from 100 km–300 km to 100 km–
200 km. As a result, the PM2.5 coefficients for all four dependent vari-
ables decreased in magnitude (Table 5, Scenario 3). This is to be ex-
pected as a nearer range means that the upwind pollution sources are
closer to the cities they are instrumenting for and thus more likely to
share more similar economic characteristics. As such, a near IV range
will bias the results in the direction of OLS estimates. In contrast, the
PM2.5 coefficients are insignificant when a further IV range of 400 km–
600 km is used (Table 5, Scenario 4). This is because the upwind pollu-
tion sources have little predictive power on downwind air quality as can
be seen from the low first stage KP F statistics. Third, we alter the radius
for climate monitoring stations from within 100 km to 50 km and
150 km respectively (Table 6, Scenarios 5 and 6). The PM2.5 coefficients
are slightly smaller for the self-rated health metrics, and largely similar
for subjective well-being metrics.
11 It is possible that respondents are answering the well-being questions with reference
to their current conditions. However, this would not explain why there is a monotonic re-
lationship between temporal lengths and valuation. Table S1 shows the pairwise correla-
tions between air qualities and we see the correlation coefficients are not monotonic
according to temporal lengths
12 We also tested for simultaneity effects by examining the impact of air pollution on in-
come and found no significant effects (Table S2).
4.3. Alternate air pollutants

Next, we re-run the baseline specification using different air pollut-
ants (Table 6). First, judging by the KP F-statistics, upwind pollution
sources are best at predicting pollutants such as AQI and PM10. Hence,
it is not surprising that the air pollutant coefficients are similar in mag-
nitude to the PM2.5s'. In comparison, the KP F-statistics is somewhat
smaller for the SO2, NO2, O3, and CO. As such, upwind pollution sources
are not a good predictor for these pollutants and this is reflected in the
air pollutants' coefficients in the second stage estimation.

4.4. Falsification test using lead-time air pollution

We conduct a falsification test by using lead-time pollution variables
as we do not expect to see any relationship between one's well-being
and future air quality. Even though the IV strategy was deployed to ac-
count for the confounding relationship between economic opportuni-
ties and self-report well-being, it is possible that our choice of
instrument may not fully account for all endogeneity issues. Hence,
this test will help detect other factors that are correlated with air qual-
ity, and also affect subjective well-being. Second, it is also possible that
the monotonic relationship we observe between air pollution of lag
temporal lengths is driven by seasonal patterns in air quality. Table 7
shows the coefficient for PM2.5 and income at leads of 1-week, 2-
week, 1-month, 2-month, 6-month, and 1-year. Unlike when using
lagged air quality, there are no clear patterns in the results as most of
the PM2.5 coefficients are statistically insignificant. Hence, this falsifica-
tion test confirms that our results are not driven by seasonal variation in
air quality.

4.5. Other climate variables

As air quality is often correlatedwith other climate variables, we dis-
play the coefficients for these climate variables to demonstrate that
there are no discernible patterns, as seen earlier for the PM2.5 coeffi-
cients (Table 8).

4.6. Alternate model specifications

As the dependent variables are measured on ordinal scale,
categorical-type regression models such as ordered logit or probit may
be more suited for this analysis. However, we chose to rely on linear



Table 3
Regression results of air quality on subjective well-being with income added.

Self-rated health Subjective-wellbeing

Self-rated health
(1-unhealthy, 5-healthy)

Very unhealthy
(1-unhealthy, 0-otherwise)

Subjective well-being
(1-unhappy, 5-happy)

Very unhappy
(1-unhappy, 0-otherwise)

(1) (2) (3) (4)

Panel A. Add income
PM2.5 −0.0230⁎⁎ 0.0104⁎⁎⁎ −0.0206⁎⁎ 0.0025⁎⁎

(0.0091) (0.0037) (0.0100) (0.0010)
ln (per capita household income) 0.1766⁎⁎⁎ −0.0634⁎⁎⁎ 0.1380⁎⁎⁎ −0.0183⁎⁎⁎

(0.0210) (0.0078) (0.0180) (0.0032)
KP F-statistics 19.94⁎ 19.91 19.75 19.91
Observations 3267 3270 3266 3270

Panel B. Willingness to pay
Income (1000 RMB)
Mean of per capita household income 29.4213 29.4213 29.4213 29.4213
Mean of household income 71.1130 71.1130 71.1130 71.1130

MWTP (%)
% of Household income −5.3883 −6.7867 −6.1759 −5.6520

Notes: Weather controls include the second order polynomial of temperature, precipitation, sunshine hours and wind force. We control the individual characters age, age squared, and
gender, as well as the household characters residence, marriage status, ethnic group, family size and living space. Standard errors are clustered by date and listed in parentheses.
⁎⁎⁎ p b 0.01.
⁎⁎ p b 0.05.
⁎ p b 0.1.
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regressions for three main reasons. First, Angrist and Imbens (1995)
showed that the two stage least squares estimator (2SLS) – which we
used here – consistently estimates the “average causal response” even
when the dependent variable is categorical. Second, unlike their linear
counterparts, there are still no established models for ordered probit/
logit model when instrumental variables are needed. However, IV-
probit (i.e., with binary dependent variable) models had been devel-
oped. The IV-probit model (Table A4, Column 1) showed similar results
in magnitude and statistical significance as those obtained from 2SLS.
Third, when faced with a similar modeling situation, Anderson et al.
(2016) used an ‘informal’ control function approach to circumvent the
lack of an established ordered IV-probit model (Rivers and Vuong,
1988). In this application, a non-IV ordered probit is first estimated
Table 4
Regression results of air quality with temporal lags of various lengths on subjective well-being

(1) (2) (3)

1-Year lag 6-Month lag 2-Month

Explanatory Var.: PM2.5

Self-rated health (1-unhealthy, 5-healthy) −0.0080⁎⁎ −0.0095⁎⁎⁎ −0.0074⁎

(0.0034) (0.0029) (0.0042)
Log income 0.1763⁎⁎⁎ 0.1774⁎⁎⁎ 0.1747⁎⁎⁎

(0.0177) (0.0182) (0.0170)

MWTP
(% of household income)

−1.88 −2.22 −1.75

Estimated coef.
Subjective well-being (1-unhappy, 5-happy) −0.0107⁎⁎ −0.0111⁎⁎⁎ −0.0110⁎

(0.0043) (0.0042) (0.0045)
Log income 0.1406⁎⁎⁎ 0.1394⁎⁎⁎ 0.1397⁎⁎⁎

(0.0206) (0.0196) (0.0216)

MWTP
(% of household income)

−3.15 −3.29 −3.26

Mean of PM2.5 59.60 52.45 41.18
SD of PM2.5 17.46 17.03 14.99

Notes: Weather controls include the second order polynomial of the same temporal length for t
acters age, age squared, and gender, as well as the household characters residence, marriage st
listed in parentheses.
⁎⁎⁎ p b 0.01.
⁎⁎ p b 0.05.
⁎ p b 0.1.
without the endogenous covariate (i.e., AQI). Both the residuals from
this estimation and the endogenous covariate are then included as re-
gressors in the second stage. Results of this estimation (Table A4, Col-
umns 2 to 9) show that the coefficients are mostly similar in
magnitude and size to their linear counterparts.

5. Discussions

In this study, we combine a social survey fielded in China with de-
tailed air quality data to examine how responses to subjective well-
being questions vary with exposure to air pollution. First, our results
show that respondents reported being less happy and less healthy if
theywere exposed tomore severe air pollution on the day of the survey.
.

(4) (5) (6) (7) (8)

lag 1-Month lag 3-Week lag 2-Week lag 1-Week lag Interview day

−0.0109⁎⁎⁎ −0.0116⁎⁎⁎ −0.0100⁎⁎ −0.0125⁎⁎⁎ −0.0230⁎⁎⁎

(0.0037) (0.0039) (0.0046) (0.0045) (0.0066)
0.1766⁎⁎⁎ 0.1769⁎⁎⁎ 0.1757⁎⁎⁎ 0.1762⁎⁎⁎ 0.1766⁎⁎⁎

(0.0176) (0.0175) (0.0184) (0.0176) (0.0181)

−2.55 −2.71 −2.35 −2.94 −5.39

⁎ −0.0110⁎⁎ −0.0116⁎⁎ −0.0124⁎⁎ −0.0139⁎⁎ −0.0206⁎⁎

(0.0049) (0.0052) (0.0053) (0.0059) (0.0080)
0.1396⁎⁎⁎ 0.1390⁎⁎⁎ 0.1382⁎⁎⁎ 0.1388⁎⁎⁎ 0.1380⁎⁎⁎

(0.0207) (0.0203) (0.0204) (0.0200) (0.0198)

−3.26 −3.45 −3.71 −4.14 −6.18

40.34 40.60 40.97 40.12 41.16
15.41 17.41 19.05 22.09 37.33

emperature, precipitation, sunshine hours andwind force. We control the individual char-
atus, ethnic group, family size and living space. Standard errors are clustered by date and



Table 5
Robustness checks.

(1) (2) (3) (4)

Self-rated
health
(1-unhealthy,
5-healthy)

Very
unhealthy
(1-unhealthy,
0-otherwise)

Subjective
well-being
(1-unhappy,
5-happy)

Very
unhappy
(1-unhappy,
0-otherwise)

Baseline
PM2.5 −0.0192⁎⁎ 0.0098⁎⁎⁎ −0.0200⁎⁎ 0.0020⁎⁎

(0.0091) (0.0034) (0.0087) (0.0009)
KP
F-statistics

20.68 20.68 20.68 20.68

Scenario 1: Clustering by cohort
PM2.5 −0.0192⁎⁎⁎ 0.0098⁎⁎⁎ −0.0200⁎⁎ 0.0020⁎⁎

(0.0065) (0.0035) (0.0081) (0.0010)
KP
F-statistics

59.36 59.36 59.36 59.36

Scenario 2: Two-way clustering by date and by cohort
PM2.5 −0.0192⁎⁎⁎ 0.0098⁎⁎⁎ −0.0200⁎⁎ 0.0020⁎⁎⁎

(0.0055) (0.0026) (0.0099) (0.0005)
KP
F-statistics

20.90 20.90 20.90 20.90

Scenario 3: IV range: 100–200 km
PM2.5 −0.0162⁎ 0.0085⁎⁎ −0.0193⁎⁎ 0.0014⁎

(0.0091) (0.0034) (0.0086) (0.0009)
KP
F-statistics

20.59 20.59 20.59 20.59

Scenario 4: IV range: 400–600 km
PM2.5 −0.0977 0.0684 −0.0926 0.0222

(0.2634) (0.1671) (0.2420) (0.0505)
KP
F-statistics

0.180 0.180 0.180 0.180

Scenario 5: IDW: ≤50 km
PM2.5 −0.0154⁎⁎ 0.0077⁎⁎⁎ −0.0193⁎⁎ 0.0019⁎⁎

(0.0078) (0.0029) (0.0078) (0.0008)
KP
F-statistics

22.65 22.65 22.65 22.65

Scenario 6: IDW: ≤150 km
PM2.5 −0.0138⁎ 0.0070⁎⁎ −0.0197⁎⁎ 0.0019⁎⁎

(0.0081) (0.0030) (0.0082) (0.0009)
KP
F-statistics

20.13 20.13 20.13 20.13

Notes: N = 3640. Weather controls include the second order polynomial of temperature,
precipitation, sunshine hours and wind force. We control the individual characters age,
age squared, and gender, as well as the household characters residence, marriage status,
ethnic group, family size and living space. Unless stated otherwise, standard errors are
clustered by date and listed in parentheses.
⁎⁎⁎ p b 0.01.
⁎⁎ p b 0.05.
⁎ p b 0.1.

Table 6
Robustness checks using alternate air pollutants.

(1) (2) (3) (4)

Self-rated
health
(1-unhealthy,
5-healthy)

Very unhealthy
(1-unhealthy,
0-otherwise)

Subjective
well-being
(1-unhappy,
5-happy)

Very
unhappy
(1-unhappy,
0-otherwise)

AQI −0.0162⁎⁎ 0.0083⁎⁎⁎ −0.0169⁎⁎ 0.0017⁎⁎

(0.0075) (0.0028) (0.0073) (0.0008)
KP F-statistics 22.47 22.45 22.25 22.45
PM2.5 (Baseline) −0.0192⁎⁎ 0.0098⁎⁎⁎ −0.0200⁎⁎ 0.0020⁎⁎

(0.0091) (0.0034) (0.0087) (0.0009)
KP F-statistics 20.68 20.65 20.46 20.65
PM10 −0.0179⁎⁎ 0.0092⁎⁎⁎ −0.0186⁎⁎ 0.0018⁎⁎

(0.0083) (0.0031) (0.0083) (0.0008)
KP F-statistics 21.93 21.91 21.83 21.91
O3 −0.0773 0.0397⁎ −0.0797⁎ 0.0079⁎

(0.0492) (0.0224) (0.0478) (0.0046)
KP F-statistics 3.859 3.843 3.925 3.843
SO2 −0.1521⁎⁎⁎ 0.0782⁎⁎⁎ −0.1576⁎⁎⁎ 0.0156⁎

(0.0508) (0.0256) (0.0535) (0.0081)
KP F-statistics 19.00 18.97 19.05 18.97
NO2 −0.0709⁎⁎ 0.0364⁎⁎⁎ −0.0739⁎⁎ 0.0073⁎⁎

(0.0355) (0.0129) (0.0348) (0.0037)
KP F-statistics 15.51 15.51 15.24 15.51
CO −1.8301⁎⁎ 0.9410⁎⁎⁎ −1.9009⁎⁎ 0.1877⁎⁎

(0.8941) (0.3409) (0.9370) (0.0944)
KP F-statistics 17.34 17.20 17.15 17.20
Observations 3637 3640 3632 3640
County FE Yes Yes Yes Yes
Month-by-week
FE

Yes Yes Yes Yes

Weather
Controls

Yes Yes Yes Yes

Covariates Yes Yes Yes Yes
Survey Weights Yes Yes Yes Yes

Notes: Weather controls include the second order polynomial of temperature, precipita-
tion, sunshine hours and wind force. We control the individual characters age, age
squared, and gender, as well as the household characters residence, marriage status, eth-
nic group, family size and living space. Standard errors are clustered by date and listed in
parentheses.
⁎⁎⁎ p b 0.01.
⁎⁎ p b 0.05.
⁎ p b 0.1.
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This result is robust to the inclusion of a battery of socioeconomic and
weather variables controls. To recover causal interpretation,we also de-
ploy an instrumental variable (IV) strategy as air quality is known to be
positively correlated with economic opportunities. This instrument,
constructed using upwind pollution from counties 100–300 km away,
worked as intended as the sign of the air pollution coefficient flipped
from positive to negative after instrumenting. In all, we find that house-
holds arewilling to pay around 5.4% to 6.2% of the household income for
a unit improvement in air quality. Next, we extend the analysis to exam-
ine if valuation of air quality is affected by recency or projection bias.We
find evidence of these biases as valuation of clean air systematically de-
creases when the temporal length of air pollution is gradually increased
from daily to annual. Themagnitude of these biases is non-trivial as val-
uation for a one-unit improvement in daily PM2.5 is at 6.2% of household
income and decreases to 3.1% of household incomewhen improvement
is considered in terms of annual PM2.5. Alternatively, another way of
framing these biases is that an average individual is willing to pay
3.1% of household income for a one-unit improvement for everyday
over the year. On the other hand, the average individual is willing to
pay 6.2% of household income for a one-unit improvement only in to-
morrow's air quality. This is a counter-intuitive result as the health im-
plications of exposure to long-term air pollution are more severe than
short-term implications.

The implications of our findings are threefold. First, we have recov-
ered a country-wide estimate of air quality improvement valuation for
Chinese residents. Importantly, along with other studies in the air qual-
ity valuation literature (e.g. Freeman et al., 2017; Gonzalez et al., 2013;
Tan-Soo, 2017), we show that air pollution is indeed correlated with
factors that would increase one's utility (most likely economic opportu-
nities). This confirms that a biased valuation for air quality improve-
ments would have been estimated if these confounding factors are not
dealt with. Second, to the authors' best knowledge, this is one of the
first attempts to investigate recency and projection biases in air quality
valuation. From a research viewpoint, our results provide fodder to con-
duct more empirical investigations to confirm if these valuation biases
translate into ‘excessive’ purchases of protective equipment against air
pollution. For example, Conlin et al. (2007) found that a much higher
rate of returns for winter clothing if orders were made on a very cold
day – suggesting excessive purchases at the onset. Also, our results
call for a larger rethink on the valuation of air quality. For example, air
quality valuation from contingent valuation studies – where data tend
to be collected from respondents at the same location within a short
time frame – could possibly be over or under-estimated, depending on
the air quality on the day of the interview. This means that researchers



Table 7
Falsification test showing regression results of air quality with temporal leads of various lengths on subjective well-being.

Period PM2.5 (1) (2) (3) (4) (5) (6) (7)

1-Week lead 2-Week lead 3-Week lead 1-Month lead 2-Month lead 6-Month lead 1-Year lead

Self-rated health (1-unhealthy, 5-healthy) −0.0044 −0.0096 0.1044 0.0077 −0.0224 −0.1344 0.2979
(0.0069) (0.0282) (0.0774) (0.0464) (0.0585) (0.1368) (0.3913)

Log income 0.1807⁎⁎⁎ 0.1795⁎⁎⁎ 0.1626⁎⁎⁎ 0.1792⁎⁎⁎ 0.1775⁎⁎⁎ 0.1791⁎⁎⁎ 0.1804⁎⁎⁎

(0.0161) (0.0164) (0.0186) (0.0161) (0.0168) (0.0191) (0.0178)
Very unhealthy (1-unhealthy, 0-otherwise) 0.0008 −0.0017 −0.0359 −0.0171 0.0105 0.0248 −0.0920

(0.0017) (0.0069) (0.0270) (0.0206) (0.0262) (0.0737) (0.3093)
Log Income −0.0648⁎⁎⁎ −0.0638⁎⁎⁎ −0.0584⁎⁎⁎ −0.0639⁎⁎⁎ −0.0641⁎⁎⁎ −0.0646⁎⁎⁎ −0.0641⁎⁎⁎

(0.0085) (0.0080) (0.0071) (0.0076) (0.0073) (0.0089) (0.0088)
Subjective well-being (1-unhappy, 5-happy) 0.0104⁎ 0.0165⁎⁎ −0.0333 −0.1426⁎⁎⁎ −0.1590⁎⁎⁎ 0.0158 −1.0518

(0.0085) (0.0261) (0.0870) (0.0317) (0.0485) (0.1242) (0.9251)
Log income 0.1383⁎⁎⁎ 0.1419⁎⁎⁎ 0.1486⁎⁎⁎ 0.1506⁎⁎⁎ 0.1380⁎⁎⁎ 0.1402⁎⁎⁎ 0.1437⁎⁎⁎

(0.0188) (0.0201) (0.0187) (0.0217) (0.0212) (0.0205) (0.0201)
Very unhappy (1-unhappy, 0-otherwise) −0.0011 −0.0010 0.0022 −0.0066 0.0071 −0.0040 0.0511

(0.0008) (0.0013) (0.0076) (0.0044) (0.0108) (0.0126) (0.0368)
Log income −0.0185⁎⁎⁎ −0.0188⁎⁎⁎ −0.0191⁎⁎⁎ −0.0183⁎⁎⁎ −0.0185⁎⁎⁎ −0.0186⁎⁎⁎ −0.0186⁎⁎⁎

(0.0019) (0.0021) (0.0019) (0.0020) (0.0026) (0.0021) (0.0022)
Mean of PM2.5 39.48 38.30 38.10 38.15 41.03 60.92 53.29
SD of PM2.5 21.88 18.02 17.34 15.66 17.17 21.22 15.90

Notes: Weather controls include the second order polynomial of temperature, precipitation, sunshine hours and wind force. We control the individual characters age, age squared, and
gender, as well as the household characters residence, marriage status, ethnic group, family size and living space. Standard errors are clustered by date and listed in parentheses.
⁎⁎⁎ p b 0.01.
⁎⁎ p b 0.05.
⁎ p b 0.1.

Table 8
Coefficients from climatic variables.

(1) (2) (3) (4) (5) (6) (7) (8)

1-Year lag 6-Month lag 2-Month lag 1-Month lag 3-Week lag 2-Week lag 1-Week lag Interview day

Self-rated health (1-unhealthy, 5-healthy)
Temperature 0.1895 −0.0039 0.0137 0.0160 0.0753 0.0062 0.0055⁎ 0.0022

(0.2087) (0.0171) (0.0173) (0.0125) (0.1073) (0.0047) (0.0031) (0.0021)
Rainfall 0.0460 −0.0004 −0.0048 −0.0039 −0.0240 −0.0009 −0.0017⁎⁎⁎ 0.0001

(0.0760) (0.0167) (0.0089) (0.0090) (0.0356) (0.0007) (0.0006) (0.0002)
Sunshine duration −0.0387 −0.0016 0.0026 −0.0167 −0.0570 −0.0049 −0.0028 −0.0016⁎⁎

(0.4152) (0.0398) (0.0218) (0.0120) (0.0721) (0.0048) (0.0022) (0.0008)

Subjective well-being (1-unhappy, 5-happy)
Temperature 0.3212 −0.0194 0.0158 0.0141 0.0177 0.0061 0.0091⁎⁎⁎ 0.0014

(0.2011) (0.0155) (0.0101) (0.0110) (0.0219) (0.0045) (0.0030) (0.0015)
Rainfall −0.1015 −0.0204 −0.0013 0.0056 −0.0031 −0.0004 −0.0016⁎⁎⁎ −0.0002⁎

(0.0714) (0.0141) (0.0054) (0.0074) (0.0071) (0.0007) (0.0006) (0.0001)
Sunshine duration −0.4229 0.0465⁎ −0.0128 0.0011 −0.0184 −0.0031 −0.0021 −0.0016⁎⁎

(0.4020) (0.0282) (0.0131) (0.0104) (0.0127) (0.0039) (0.0018) (0.0006)

Notes: Weather controls include the second order polynomial of temperature, precipitation, sunshine hours and wind force. We control the individual characters age, age squared, and
gender, as well as the household characters residence, marriage status, ethnic group, family size and living space. Standard errors are clustered by date and listed in parentheses.
⁎⁎⁎ p b 0.01.
⁎⁎ p b 0.05.
⁎ p b 0.1.
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need to start paying more attention on temporal scale of air quality
when conducting valuation studies. Third, from a policy viewpoint,
decision-makers could conceivably exploit this behavioral bias to en-
gage the public more favorably with respect to air quality management
policies immediately after a severe episode of air pollution. This is
P
G
A
E
R

especially poignant for many developing cities in Asia as ‘airpocalyse’
events – short, but highly intense bouts of air pollution – have become
more frequent in recent years.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.08.153.
Appendix A
Table A1

Summary statistics for personal characters and family information.
Variable
 Definition (Unit)
 Mean
 Std.
 Min
 Max
ersonal characteristics

ender
 1-male, 0-female
 0.47
 0.50
 0.00
 1.00

ge
 Years
 50.64
 16.78
 18.00
 93.00

ducation
 Level: 1 to13
 4.97
 3.15
 1.00
 13.00

esidence
 1-urban, 0-rural
 0.27
 0.45
 0.00
 1.00
(continued on next page)

https://doi.org/10.1016/j.scitotenv.2018.08.153
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able A1 (continued)
Variable
M
M
R
P

Fa
Li

P
P

P
P

C
M
W
C
S
O

P

P

P

P

C
M
W
C
S
O

Definition (Unit)
 Mean
 Std.
 Min
 Max
arriage
 1-yes, 0-no
 0.79
 0.41
 0.00
 1.00

inority
 1-yes, 0-no
 0.08
 0.27
 0.00
 1.00

eligion
 1-yes, 0-no
 0.13
 0.33
 0.00
 1.00

er capita household income
 1000 yuan per year
 29.42
 91.04
 0.07
 4000
mily information

ving-space
 m2
 116.40
 86.61
 0.00
 1050.00

mily-size
 Number
 2.88
 1.41
 1.00
 14.00
Fa
Notes: N = 3640. Research sample is 1/5 random subsample of CGSS. Survey period of CGSS 2015 lasts from Jul-2015 to Nov-2015.
Table A2

Regression results of air quality on subjective well-being: By gender and by age cohort.
(1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)
Male
 Female
 Workage
 Retire (Age N 60)
 Male
 Female
 Workage
 Retire (Age N 60)
anel A. Self-rated health
 Self-rated health (1-unhealthy, 5-health)
 Very unhealthy (1-unhealthy, 0-otherwise)

M2.5
 −0.0266⁎⁎
 −0.0382⁎⁎
 −0.0229⁎⁎
 −0.0279⁎⁎⁎
 0.0100⁎⁎
 0.0160⁎⁎⁎
 0.0078⁎⁎
 0.0191⁎⁎
(0.0121)
 (0.0154)
 (0.0097)
 (0.0105)
 (0.0042)
 (0.0056)
 (0.0034)
 (0.0096)
anel B. Subjective well-being
 Subjective well-being (1-unhappy, 5-happy)
 Very unhappy (1-unhappy, 0-otherwise)

M2.5
 −0.0094
 −0.0280⁎⁎
 −0.0147
 −0.0372⁎
 0.0021
 0.0024⁎⁎
 0.0012
 0.0046⁎⁎⁎
(0.0125)
 (0.0130)
 (0.0100)
 (0.0205)
 (0.0016)
 (0.0011)
 (0.0009)
 (0.0012)
ounty FE
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

onth-by-week FE
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

eather controls
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

ovariates
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

urvey weights
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

bservations
 1716
 1921
 2432
 1205
 1718
 1922
 2433
 1207

P F-statistics
 18.12
 20.50
 20.19
 17.42
 18.10
 20.42
 20.20
 16.47
K
Notes: N = 3640. Weather controls include the second order polynomial of temperature, precipitation, sunshine hours and wind force. We control the individual characters age, age
squared, and gender, as well as the household characters residence, marriage status, ethnic group, family size and living space. Standard errors are clustered by date and listed in
parentheses.

⁎⁎⁎ p b 0.01.
⁎⁎ p b 0.05.
⁎ p b 0.1.
Table A3

Regression results of air quality on subjective well-being: By education and by income.
(1)
 (2)
 (3)
 (4)
 (5)
 (6)
 (7)
 (8)
Below compulsory
education
Above compulsory
education
Below average
income
Above average
income
Below compulsory
education
Above compulsory
education
Below average
income
Above average
income
anel A. Self-rated
health
Self-rated health (1-unhealthy, 5-healthy)
 Very unhealthy (1-unhealthy, 0-otherwise)
M2.5
 −0.0077
 −0.0286⁎⁎⁎
 −0.0141
 −0.0720⁎⁎⁎
 0.0013
 0.0198⁎⁎⁎
 0.0042⁎
 0.0353⁎⁎
(0.0076)
 (0.0106)
 (0.0086)
 (0.0067)
 (0.0026)
 (0.0069)
 (0.0024)
 (0.0148)
anel B. Subjective
well-being
Subjective well-being (1-unhappy, 5-happy)
 Very unhappy (1-unhappy, 0-otherwise)
M2.5
 0.0031
 −0.0504⁎⁎⁎
 −0.0027
 −0.0974⁎⁎
 −0.0001
 0.0064⁎⁎⁎
 0.0015
 0.0082⁎⁎
(0.0092)
 (0.0187)
 (0.0091)
 (0.0437)
 (0.0004)
 (0.0023)
 (0.0011)
 (0.0040)
ounty FE
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

onth-by-week FE
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

eather controls
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

ovariates
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

urvey weights
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

bservations
 1267
 2358
 1538
 1729
 1268
 2360
 1540
 1730

P F-statistics
 17.16
 23.25
 28.08
 22.35
 17.12
 23.27
 27.91
 27.20
K
Notes: Weather controls include the second order polynomial of temperature, precipitation, sunshine hours and wind force. We control the individual characters age, age squared, and
gender, as well as the household characters residence, marriage status, ethnic group, family size and living space. Standard errors are clustered by date and listed in parentheses.

⁎⁎⁎ p b 0.01.
⁎⁎ p b 0.05.



Table A4
IV-probit and IV-ordered probit regression results of air quality with temporal lags of various lengths on subjective well-being.

Period PM2.5 (1) (2) (3) (4) (5) (6) (7) (8) (9)

Interview
day

1-year
lag

6-month
lag

2-month
lag

1-month
lag

3-week
lag

2-week
lag

1-week
lag

Interview
day

Very unhealthy
(1-unhealthy, 0-otherwise)

Self-rated health
(1-unhealthy, 5-healthy)

Mar. eff. 0.0088⁎⁎⁎ Est. coef. −0.0085⁎⁎ −0.0099⁎⁎ −0.0078⁎ −0.0117⁎⁎ −0.0121⁎⁎ −0.0103⁎ −0.0129⁎⁎ −0.0234⁎⁎⁎

(0.0032) ’(0.0033) (0.0046) (0.0045) (0.0052) (0.0059) (0.0053) (0.0058) (0.0082)
Log income −0.0551⁎⁎⁎ Log Income 0.1962⁎⁎⁎ 0.1979⁎⁎⁎ 0.1929⁎⁎⁎ 0.1973⁎⁎⁎ 0.1972⁎⁎⁎ 0.1949⁎⁎⁎ 0.1954⁎⁎⁎ 0.1974⁎⁎⁎

(0.0093) (0.0230) (0.0229) (0.0228) (0.0229) (0.0228) (0.0230) (0.0225) (0.0231)
MWTP −6.61 MWTP −1.79 −2.07 −1.67 −2.45 −2.54 −2.19 −2.73 −4.90

Very unhappy
(1-unhappy, 0-otherwise)

Subjective well-being
(1-unhappy, 5-happy)

Mar. eff. 0.0018⁎⁎ Est. coef. −0.0147⁎⁎ −0.0150⁎⁎ −0.0151⁎⁎ −0.0152⁎⁎ −0.0153⁎ −0.0168⁎⁎ −0.0191⁎⁎ −0.0279⁎⁎

(0.0009) (0.0062) (0.0059) (0.0067) (0.0072) (0.0084) (0.0084) (0.0092) (0.0123)
Log income −0.0136⁎⁎⁎ Log Income 0.2044⁎⁎⁎ 0.2026⁎⁎⁎ 0.2014⁎⁎⁎ 0.2030⁎⁎⁎ 0.2013⁎⁎⁎ 0.1997⁎⁎⁎ 0.2003⁎⁎⁎ 0.2003⁎⁎⁎

(0.0032) (0.0244) (0.0242) (0.0252) (0.0244) (0.0242) (0.0244) (0.0244) (0.0246)
MWTP −5.48 MWTP −2.98 −3.06 −3.10 −3.09 −3.14 −3.48 −3.95 −5.76

Notes: Column (1) estimated using IV-probit, columns (2) to (9) estimated using IV-ordered probit.Weather controls include the second order polynomial of the same temporal length for
temperature, precipitation, sunshine hours and wind force. We control the individual characters age, age squared, and gender, as well as the household characters residence, marriage
status, ethnic group, family size and living space. Standard errors are clustered by date and listed in parentheses.
⁎⁎⁎ p b 0.01.
⁎⁎ p b 0.05.
⁎ p b 0.1.
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⁎ p b 0.1.
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